
RE & DFA

Young-Rae Cho, Ph.D.
Professor
Department of Software / Department of Digital Healthcare
Yonsei University – Mirae Campus

 Definition
 A sequence of characters matching (or describing) a pattern in a string

 Syntax
 RE is composed of characters and metacharacters
 Metacharacters: Characters having special meanings
 Examples of metacharacters

• Grouping: ()
• Quantifier: * (occurring zero or more times)
• Alternative: |

Regular Expression (RE)

 Practice
 Binary strings of length-2

 Binary strings of length-3

 Binary strings starting with ‘0’

 Strings of ‘a’ and ‘b’ ending with ‘a’

 Strings of ‘a’ and ‘b’ that include “aa” at least once

 Strings of ‘a’ and ‘b’ with an odd number of ‘a’

 Strings of ‘a’ and ‘b’ with an even number of ‘a’

 Strings of ‘a’ and ‘b’ that do not have “aa”

Regular Expression (RE)

 More Practice
 DNA sequences starting with “TA” and ending with “AA”

 DNA sequences that include only one ‘T’

 DNA sequences that include at least one ‘G’

 DNA sequences that do not have “AA”

Regular Expression (RE)

 Metacharacters
 . (any character), \n, \t, \s (whitespace),
 \w (any alphabetic or numeric character), \W (not alphabetic nor numeric character)
 \d (decimal digit), \D (no decimal digit)
 Grouping and back-reference:

e.g., ‘(.)(.)aa\1\2’
 Quantifier: *, +, ?, { }
 e.g., ‘ct .*g’, ‘ct .+g’, ‘ct .?g’, ‘ct{2}g’, ‘ct{2,5}g’
 Alternative: |
 e.g., ‘(ct|ca)’
 Character set: []
 e.g., ‘[acgt]’, ‘[a-zA-Z]’
 Anchors: ^ (the start of the string), $ (the end of the string)
 e.g., ‘^tata’ , ‘aa$’

Regular Expression in Python

 Definition
 A finite-state machine matching (or describing) a pattern in an input string
 → DFA accepts the input string if it contains the pattern
 → DFA rejects the input string if it does not contain the pattern

 Syntax
 DFA is composed of (Q, q0, A, Σ, δ)

• Q : a finite set of states
• q0 : a start state
• A : a set of accepting states
• Σ : a finite set of input characters in a domain
• δ : transition functions from (Q x Σ) to Q

Deterministic Finite Automaton (DFA)

 Application
 Read each character of the input string and move on DFA, repeatedly
 → DFA accepts the input string if it ends up in an accepting state
 → DFA rejects the input string if it doesn’t end up in an accepting state

 Example
 Verifying inputs
 Q ?
 q0 ?
 A ?
 Σ ?
 δ ?

 Example
 Constructing automaton

Deterministic Finite Automaton (DFA)

0 1

a

a

b

b
“aba” ?

“babb” ?

[a|b]* a b

 Practice
 Binary strings of length-2

 Binary strings of length-3

 Binary strings starting with ‘0’

 Strings of ‘a’ and ‘b’ ending with ‘a’

 Strings of ‘a’ and ‘b’ that include “aa” at least once

 Strings of ‘a’ and ‘b’ with an odd number of ‘a’

 Strings of ‘a’ and ‘b’ with an even number of ‘a’

 Strings of ‘a’ and ‘b’ that do not have “aa”

Deterministic Finite Automaton (DFA)

 More Practice
 DNA sequences starting with “TA” and ending with “AA”

 DNA sequences that include only one ‘T’

 DNA sequences that include at least one ‘G’

 DNA sequences that do not have “AA”

Deterministic Finite Automaton (DFA)

 Lecture Slides on the Course Website, “https://ads.yonsei.ac.kr/faculty/biocomputing”

Questions?

	RE & DFA
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10

