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  Definition
 A process that performs a sequence of operations
 A series of well-defined instructions to perform a specific task

  How to express algorithms?
 Natural Language
 Flow Chart or Diagram
 Programming Language
 Pseudocode

  How to evaluate algorithms?
 Correctness
 Efficiency

• Must run in a reasonable time

• Big-O notation is used

Algorithms
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  Process
 Examine all possible cases to find a solution
 Also, called brute force search

  Features
 Simple
 Sometimes, very inefficient because of combinatorial explosion

  Example
 Selection sort

  Alternatives
 Random Sampling
 Branch and bound algorithm
 Anti-monotonic property

Exhaustive Search



  Algorithm
 Iteratively search the smallest one

  Runtime?

Selection Sort



  Definition
 If a case satisfies a condition, then more general cases always satisfy it
 If a case violates a condition, then more specific cases always violate it

  Example
 Find maximal sized sets of genes that occur together in at least two functions

Anti-monotonic Property

Function ID Genes

10 A,  B,  C

20 C,  D,  F

30 A,  C,  E

40 A,  B,  C,  E
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  Process
(1)  Recursively splitting the problem into smaller sub-problems 
(2)  Solve the smallest sub-problem independently
(3)  Recursively merging the solutions of sub-problems until having a solution of the original 
problem

  Features
 Improve efficiency

  Example
 Merge sort
 Quick sort

Divide-and-Conquer Algorithm



  Algorithm
(1) Recursively divide the array
(2) Recursively combine two arrays in a sorted order

  Runtime?

Merge Sort



  Algorithm
(1) Recursively divide the array based on the pivot
(2) Recursively combine two arrays

  Runtime?

Quick Sort
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  Process
1) Formulate the problem recursively by breaking it down into sub-problems
2) Build solutions in a linear fashion
       (Repeatedly use the result of a sub-problem to solve the next sub-problem)

  Features
 Optimization (finding an optimal solution)
 Memoization (storing results of intermediate sub-problems) 

  Examples
 Sequence alignment
 Binary search tree

Dynamic Programming



  Rule
 2 piles of rocks
 A player may take either 
                  1 rock (from either pile) 
                  or 2 rocks (1 from each)
 The player who takes 
                  the last rock wins

  Winning / Losing

Dynamic Programming Example (1)
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  Rule
 A user chooses any positive integer n
 Finds the minimum number of operations to transform n to 1, out of the followings

 If n is a multiple of 3, then divide n by 3
 If n is a multiple of 2, then divide n by 2
 n - 1

  Solution
 Recursive formula

Dynamic Programming Example (2)
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  Process
1) Determine the optimal structure of a problem 
2) Find the local optimal solution at each step

  Features
 Local optimization

  Examples
 Huffman codes
 Minimum spanning tree

Greedy Algorithm



  Money Counting
 Count a certain amount of money using the fewest bills and coins
 Local optimum solution: Take the largest bill or coin at each step
 Example:  1620 won

  Scheduling
 Assign m jobs into n processors to finish all the jobs as early as possible  ( m > n )
 Local Optimum Solution ?
 Example: 9 jobs on 3 processors
                       ( runtimes of 9 jobs are 3, 5, 6, 10, 11, 14, 15, 18, and 20 min.)

Greedy Algorithm Examples



   Exhaustive Search

   Divide-and-Conquer Algorithm

   Dynamic Programming

   Greedy Algorithm

   Randomized Algorithm

Overview

  



  Process
 Examine random samples to find a solution

  Features
 Simple
 Probabilistic
 Sometimes, non-deterministic

Randomized Algorithm

• Deterministic algorithm: 

    always produce the same solution given a particular input

• Non-deterministic algorithm:

    allows multiple solutions based on an input or random choices



  Problem
 Among n nuts, find the nut that matches a given bolt

  Expected Number of Comparison ?
 T(n): number of comparison to find a match for a single bolt out of n nuts

  

  

  

Bolts and Nuts



  Lecture Slides on the Course Website, “https://ads.yonsei.ac.kr/faculty/biocomputing”

Questions?
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