
Review of Algorithms

Young-Rae Cho, Ph.D.
Professor
Division of Software / Division of Digital Healthcare
Yonsei University – Mirae Campus

 Definition
 A process that performs a sequence of operations
 A series of well-defined instructions to perform a specific task

 How to express algorithms?
 Natural Language
 Flow Chart or Diagram
 Programming Language
 Pseudocode

 How to evaluate algorithms?
 Correctness
 Efficiency

• Must run in a reasonable time

• Big-O notation is used

Algorithms

 Exhaustive Search

 Divide-and-Conquer Algorithm

 Dynamic Programming

 Greedy Algorithm

 Randomized Algorithm

Overview



 Process
 Examine all possible cases to find a solution
 Also, called brute force search

 Features
 Simple
 Sometimes, very inefficient because of combinatorial explosion

 Example
 Selection sort

 Alternatives
 Random Sampling
 Branch and bound algorithm
 Anti-monotonic property

Exhaustive Search

 Algorithm
 Iteratively search the smallest one

 Runtime?

Selection Sort

 Definition
 If a case satisfies a condition, then more general cases always satisfy it
 If a case violates a condition, then more specific cases always violate it

 Example
 Find maximal sized sets of genes that occur together in at least two functions

Anti-monotonic Property

Function ID Genes

10 A, B, C

20 C, D, F

30 A, C, E

40 A, B, C, E

 Exhaustive Search

 Divide-and-Conquer Algorithm

 Dynamic Programming

 Greedy Algorithm

 Randomized Algorithm

Overview



 Process
(1) Recursively splitting the problem into smaller sub-problems
(2) Solve the smallest sub-problem independently
(3) Recursively merging the solutions of sub-problems until having a solution of the original
problem

 Features
 Improve efficiency

 Example
 Merge sort
 Quick sort

Divide-and-Conquer Algorithm

 Algorithm
(1) Recursively divide the array
(2) Recursively combine two arrays in a sorted order

 Runtime?

Merge Sort

 Algorithm
(1) Recursively divide the array based on the pivot
(2) Recursively combine two arrays

 Runtime?

Quick Sort

 Exhaustive Search

 Divide-and-Conquer Algorithm

 Dynamic Programming

 Greedy Algorithm

 Randomized Algorithm

Overview



 Process
1) Formulate the problem recursively by breaking it down into sub-problems
2) Build solutions in a linear fashion
 (Repeatedly use the result of a sub-problem to solve the next sub-problem)

 Features
 Optimization (finding an optimal solution)
 Memoization (storing results of intermediate sub-problems)

 Examples
 Sequence alignment
 Binary search tree

Dynamic Programming

 Rule
 2 piles of rocks
 A player may take either
 1 rock (from either pile)
 or 2 rocks (1 from each)
 The player who takes
 the last rock wins

 Winning / Losing

Dynamic Programming Example (1)

W L W L W L W L W L
W W W W W W W W W W W
L W L W L W L W L W L
W W W W W W W W W W W
L W L W L W L W L W L
W W W W W W W W W W W
L W L W L W L W L W L
W W W W W W W W W W W
L W L W L W L W L W L
W W W W W W W W W W W
L W L W L W L W L W L

W
W W

L

L L
W

W

0 1 2 3 4 5 6 7 8 9 10

0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10

 Rule
 A user chooses any positive integer n
 Finds the minimum number of operations to transform n to 1, out of the followings

 If n is a multiple of 3, then divide n by 3
 If n is a multiple of 2, then divide n by 2
 n - 1

 Solution
 Recursive formula

Dynamic Programming Example (2)

 Exhaustive Search

 Divide-and-Conquer Algorithm

 Dynamic Programming

 Greedy Algorithm

 Randomized Algorithm

Overview



 Process
1) Determine the optimal structure of a problem
2) Find the local optimal solution at each step

 Features
 Local optimization

 Examples
 Huffman codes
 Minimum spanning tree

Greedy Algorithm

 Money Counting
 Count a certain amount of money using the fewest bills and coins
 Local optimum solution: Take the largest bill or coin at each step
 Example: 1620 won

 Scheduling
 Assign m jobs into n processors to finish all the jobs as early as possible (m > n)
 Local Optimum Solution ?
 Example: 9 jobs on 3 processors
 (runtimes of 9 jobs are 3, 5, 6, 10, 11, 14, 15, 18, and 20 min.)

Greedy Algorithm Examples

 Exhaustive Search

 Divide-and-Conquer Algorithm

 Dynamic Programming

 Greedy Algorithm

 Randomized Algorithm

Overview



 Process
 Examine random samples to find a solution

 Features
 Simple
 Probabilistic
 Sometimes, non-deterministic

Randomized Algorithm

• Deterministic algorithm:

 always produce the same solution given a particular input

• Non-deterministic algorithm:

 allows multiple solutions based on an input or random choices

 Problem
 Among n nuts, find the nut that matches a given bolt

 Expected Number of Comparison ?
 T(n): number of comparison to find a match for a single bolt out of n nuts







Bolts and Nuts

 Lecture Slides on the Course Website, “https://ads.yonsei.ac.kr/faculty/biocomputing”

Questions?

	Review of Algorithms
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21

