
Sequence Alignment

Young-Rae Cho, Ph.D.
Professor
Division of Software / Division of Digital Healthcare
Yonsei University – Mirae Campus

1. Backgrounds

2. Manhattan Tourist Problem

3. Longest Common Subsequence Problem

4. Edit Distance

5. Global Sequence Alignment

6. Local Sequence Alignment

7. Alignment with Gap Penalty

8. Sequence Homolog Search

9. Multiple Sequence Alignment

Overview

 Homologs
 similar sequence + common ancestor (divergent evolution)
 Orthlogs:
 Paralogs:

 Analogs
 similar sequence + no common ancestor (convergent evolution)

 How to measure sequence similarity?
1) Counting identical letters on each position

2) Inserting gaps to maximize the number of identical letters

Homologs, Orthologs, Paralogs, and Analogs

homologs in different species by species divergence

homologs in the same species by gene duplication

A C G T T A T

T C G T A C T

A C G T T A - T

T C G T - A C T

| | | |

| | | | |

 Measure (1)
 Compares the letters on the same position between two sequences
 Not applicable to measurement of evolutionary distance

 Measure (2)
 Compares the letters in the same order (even on different positions) between two sequences
 More applicable to measurement of evolutionary distance
 Why?
 Example?

Sequence Similarity Measures

 Definition
 Arranging two or more DNA or protein sequences by inserting gaps to maximize their

sequence similarity score
 What is sequence similarity score?

• the number of identical positions?
• the sum of scores by any scoring scheme?

 Applications
 Given gene sequences, infer their evolutionary history (phylogenetics)
 Given gene sequences of known functions, infer the functions of newly sequenced genes
 Given genes of known functions in one organism, infer the functions of genes in another

organism

Sequence Alignment

1. Backgrounds

2. Manhattan Tourist Problem

3. Longest Common Subsequence Problem

4. Edit Distance

5. Global Sequence Alignment

6. Local Sequence Alignment

7. Alignment with Gap Penalty

8. Sequence Homolog Search

9. Multiple Sequence Alignment

Overview

 Problem Definition
 A tourist seeks a path to travel with the most attractions in Manhattan road map
 (grid structure)
 Restrictions

• A path from a source to a sink
• A path only eastward and southward

Manhattan Tourist Problem (MTP)

source

sink

*
* *

*
*

*

*

*

*

*
*

*
*

*
*

*

*
*

*

*

*

 Goal
 Finding the strongest path from a source to a sink in a weighted grid

• The weight of an edge is defined as the number of attractions
• The path strength is measured by summing the weights on the path

 Input
 A weighted grid G with two distinct vertices, source and sink

 Output
 A strongest path in G from the source to the sink

Formulation of MTP

 Example

Example of MTP

source

sink

*
*

*

*

*

*

*

*

*

*
*

*

*
*

*

*

*

*

*

*

0

*

0

1 3 5

5 8

9 10

 Algorithm
1) Enumerate all possible paths from the source to the sink
2) Compute the path strength for every path
3) Find the strongest path

 Problems ?

 Runtime ?

Solving by Exhaustive Search

 Algorithm
1) Start from the source
2) Select the edge having the higher weight
3) Repeat (2) until it reaches the sink

 Problems ?

 Runtime ?

Solving by Greedy Algorithm

 Algorithm

 Problems ?

 Runtime ?

Solving by Recursive Algorithm

 Algorithm

 Recursive Formula

Solving by Dynamic Programming

 Example

 Runtime ?

Example of Dynamic Programming

source

sink

*
*

*

*

*

*

*

*

*

*
*

*

*
*

*

*

*

*

*

*

0

*

0

1 3 5

5 8

9 10

1

1

0 0 1 1

1 2 3 4

6 6

3 9

4 5

 Three Different Strategies
 Column by column
 Row by row
 Along diagonals

Traversing Strategies for Dynamic Programming

1. Backgrounds

2. Manhattan Tourist Problem

3. Longest Common Subsequence Problem

4. Edit Distance

5. Global Sequence Alignment

6. Local Sequence Alignment

7. Alignment with Gap Penalty

8. Sequence Homolog Search

9. Multiple Sequence Alignment

Overview

 Subsequence of x
 An ordered sequence of letters from x
 Not necessarily consecutive
 e.g., x=“ATTGCTA”, “AGCA” ?, “TCG” ?, “ATCT” ?, “TGAT” ?

 Common Subsequence of x and y
 e.g., x=“ATCTGAT” and y=“TGCATA”, “TCTA” ?, “TGAT” ?, “TATA” ?

 Longest Common Subsequence (LCS) of x and y ?

Longest Common Subsequences (LCS)

 Example
 x=“ATCTGATG” (m=8), y=“TGCATAC” (n=7)

 Matching position in x:
 Matching Position in y:
 Common subsequence:

LCS in 2-Row Representation

A T C T G A T G
T G C A T A C

x

y

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7

2 < 3 < 4 < 6

1 < 3 < 5 < 6

“TCTA”

 Edit Graph
 2-D grid structure having diagonals on the position of the same letter

 Example
 x=“ATGTTAT” (m=7)
 y=“ATCGTAC” (n=7)
 Strongest path in edit graph

LCS in 2-D Grid Representation

source

sink

A T C G T A C

A

T

G

T

T

T

A

+1

+1

+1

+1

+1

+1

+1

+1

+1

+1

+1

+1

+1

(0,0) → (1,1) → (2,2) →

(2,3) → (3,4) → (4,5) →

(5,5) → (6,6) → (7,6) →

(7,7)

 Goal
 Finding the longest common subsequence (LCS) of two sequences (length-m, length-n)
 Finding the strongest path from a source to a sink in a weighted edit graph
 The path strength is measured by summing the weights on the path

 Input
 A weighted edit graph G with source (0,0) and sink (m,n)

 Output
 A strongest path in G from the source to the sink

Formulation of LCS Problem

 Algorithm
1) Enumerate all possible paths from the source to the sink
2) Compute the path strength for all possible paths
3) Find the strongest path

 Problems ?

Solving by Exhaustive Search

 Algorithm
1) Start from the source
2) Select the edge having the highest weight

(i.e., if there is a diagonal edge, select it. Otherwise, select one of the other edges.)
3) Repeat (2) until it reaches the sink

 Problems ?

Solving by Greedy Algorithm

 Recursive Formula

 Algorithm

Solving by Dynamic Programming

 Example
 x=“ATGTTAT” (m=7), y=“ATCGTAC” (n=7)

Example of LCS

source

sink

A T C G T A C

A

T

G

T

T

T

A

+1

+1

+1

+1

+1

+1

+1

+1

+1

+1

+1

+1

+1

0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

1 1 1 1 1 1 1

1 2 2 2 2 2 2

1 2 2

4

3 3 3

1 2 3

3

4 4

1 2 2 3 4 4 4

1 2 2 3 4 5 5

1 2 2 3 4 5 5

2

 Storing Directions

 Algorithm

Finding LCS

1. Backgrounds

2. Manhattan Tourist Problem

3. Longest Common Subsequence Problem

4. Edit Distance

5. Global Sequence Alignment

6. Local Sequence Alignment

7. Alignment with Gap Penalty

8. Sequence Homolog Search

9. Multiple Sequence Alignment

Overview

 Definition
 Edit distance between two sequences x and y : the minimum number of editing operations

(insertion, deletion, substitution) to transform x into y

 Example
 x=“TGCATAT” (m=7), y=“ATCCGAT” (n=7)

Definition of Edit Distance

TGCATAT
ATGCATAT

insertion of “A”

ATCCATAT
substitution of “G” with “C”

ATCCGATAT
insertion of “G”

ATCCGATT
deletion of “A”

ATCCGAT deletion of “T”

edit distance = 5 ?

 Example
 x=“TGCATAT” (m=7), y=“ATCCGAT” (n=7)

 Can it be done in 3 steps?

 Features
 Allows comparison of two sequences of different lengths

Example of Edit Distance

TGCATAT
ATGCATAT

insertion of “A”

ATGCAAT
deletion of “T”

ATCCAAT
substitute of “G” with “C”

ATCCGAT
substitute of “A” with “G”

edit distance = 4 ?

 Example
 x=“ATCTGATG” (m=8), y=“TGCATAC” (n=7)

Edit Distance in 2-Row Representation

A T C T G A T G
T G C A T A C

x

y

4 matches

1 substitution

3 deletions
2 insertions

A T C T G A T G
T G C A T A C

x

y
4 matches
4 deletions
3 insertions

Edit distance = min (#insertions + #deletions + #mismatches)

 Example
 x=“ATCTGATG” (m=8), y=“TGCATAC” (n=7)

Edit Distance in 2D Grid Representation

 Exhaustive Search Algorithm

 Greedy Algorithm

Solving by Exhaustive Search or Greedy Algorithm

 Recursive Formula

 Dynamic Programming Algorithm

 Implementation result in 2D grid?

 Runtime?

Solving by Dynamic Programming

1. Backgrounds

2. Manhattan Tourist Problem

3. Longest Common Subsequence Problem

4. Edit Distance

5. Global Sequence Alignment

6. Local Sequence Alignment

7. Alignment with Gap Penalty

8. Sequence Homolog Search

9. Multiple Sequence Alignment

Overview

 LCS
 Allows only insertions and deletions - no substitutions
 Scores 1 for a match and 0 for an insertion or deletion

 Edit Distance
 Allows insertions, deletions, and substitutions
 Scores 0 for a match and 1 for an insertion or deletion or substitution

 Sequence Alignment
 Allows gaps (insertions and deletions) and mismatches (substitutions)
 Uses any scoring schemes

from LCS, Edit Distance to Sequence Alignment

 Goal
 Finding the best alignment of two sequences under a given scoring schema

 Input
 Two sequences x (length-m) and y (length-n), and a scoring schema

 Output
 An alignment of x and y with the maximal score

Formulation of Global Sequence Alignment

 Basic Scoring Scheme
 Match premium: +α
 Mismatch penalty: -μ
 Insertion and deletion (gap) penalty: -σ

 Example in 2-D Grid
 x=“ATGTTAT” (m=7), y=“ATCGTAC” (n=7)

Global Sequence Alignment with Basic Scoring Scheme

Score = α #matches – μ #mismatches – σ (#insertions + #deletions)

 Exhaustive Search Algorithm

 Greedy Algorithm

Solving by Exhaustive Search or Greedy Algorithm

 Recursive Formula

 Dynamic Programming Algorithm

 Implementation result in 2D grid?

 Runtime?

Solving by Dynamic Programming

 Advanced Scoring Scheme
 Varying scores for matches
 Varying, strong penalties for mismatches
 Relative likelihood of evolutionary relationship → Probability of mutations
 Define scoring matrix for DNA or protein sequences

 Scoring Matrix
 Also called substitution matrix
 4 × 4 array representation for DNA sequences
 20 × 20 array representation for protein sequences
 Entry of δ (i, j) has the score between i and j
 → the rate at which i is substituted with j over time

Advanced Scoring Scheme

 PAM (Point Accepted Mutations)
 Amino acid substitution frequency
 in mutations
 PAM120 (results from 120 mutations
 per 100 residues) vs. PAM240

Scoring Matrix Example

 BLOSUM (Block Substitution Matrix)
 Substitution frequencies between
 clustered groups
 BLOSUM-62 (results with a cut-off of 62%

identity) vs. BLOSUM-50

 Example in 2D Grid
 x=“AGCATG” (m=6), y=“ATGCGT” (n=6)

 Recursive Formula

 Dynamic Programming Algorithm

 Implementation result in 2D grid?

 Runtime?

Solving by Dynamic Programming

1. Backgrounds

2. Manhattan Tourist Problem

3. Longest Common Subsequence Problem

4. Edit Distance

5. Global Sequence Alignment

6. Local Sequence Alignment

7. Alignment with Gap Penalty

8. Sequence Homolog Search

9. Multiple Sequence Alignment

Overview

 Example
 x = “TCAGTGTCGAAGTTA”
 y = “TAGGCTAGCAGTGTG”

 Global Sequence Alignment

 Local Sequence Alignment

Local Sequence Alignment

T C A G – – T – G T C G A A G T – T A

T – A G G C T A G – C – A – G T G T G
| | | | | | | | | |

T C A G T G T C G A A G T T A

T A G G C T A G C A G T G T G
| | | | | |

 Example

Local Sequence Alignment in 2-D Grid

T
C
A
G
T
G
T
C
G
A
A
G
T
T
A

T A G G C T A G C A G T G T G

scoring in this range

for local alignment

 Global Alignment Problem
 Finds the path having the largest weight between vertices (0,0) and (m,n) in the edit graph

 Local Alignment Problem
 Finds the path having the largest weight between two arbitrary vertices, (i, j) and (i’, j’),
 in the edit graph

 Score Comparison
 The score of local alignment must be greater than (or equal to) the score of global alignment

Comparison of Global and Local Alignment

 Goal
 Finding the best local alignment between two sequences

 Input
 Two sequences x and y, and a scoring matrix δ

 Output
 An alignment of substrings of x and y with the maximal score among all possible substrings
 of them

Formulation of Local Sequence Alignment

 Strategy

Implementation of Local Sequence Alignment

T
C
A
G
T
G
T
C
G
A
A
G
T
T
A

T A G G C T A G C A G T G T A

Compute “mini”
global alignment
for local alignment

 Process
1) Enumeration of all possible pairs of substrings
2) Global alignment for each pair of substrings

 Process Re-written
1) Enumeration of all possible pairs of start position (i, j) and end position (i’, j’)
2) Global alignment from each position (i, j) to each position (i’, j’)

 Runtime
 Suppose two sequences have the same length n
 Global alignment :
 Total runtime :

Solving by Exhaustive Search

 Process Improved
1) Enumeration of all possible starting positions (i, j)
2) Global alignment from each (i, j)

 Runtime
 Suppose two sequences have the same length n
 Global alignment :
 Total runtime :

 Solution
 Free ride !
 Assigns 0 from (0,0) to any other nodes (i, j)

Solving by Exhaustive Search - Improved

(0,0)

Yeah, a free ride!

Solving by Dynamic Programming

 Example in 2D Grid
 x=“CGTCACT” (m=7), y=“CTAGATC” (n=7)

 Recursive Formula

 Dynamic Programming Algorithm

 Implementation result in 2D grid?

 Runtime?

0

1. Backgrounds

2. Manhattan Tourist Problem

3. Longest Common Subsequence Problem

4. Edit Distance

5. Global Sequence Alignment

6. Local Sequence Alignment

7. Alignment with Gap Penalty

8. Sequence Homolog Search

9. Multiple Sequence Alignment

Overview

Scoring Insertions/Deletions

 Naïve Approach
 -σ for 1 insertion/deletion,
 -2σ for 2 consecutive insertions/deletions
 -3σ for 3 consecutive insertions/deletions, etc.
 → too severe penalty for a series of 100 consecutive insertions/deletions

 Example
 x=“ATAGC”, y=“ATATTGC”

 x=“ATAGGC”, y=“ATGTGC”

single event

Scoring Gaps of Insertions/Deletions

 Gap
 Contiguous sequence of spaces in one of the rows
 Contiguous sequence of insertions or deletions in 2-row representation

 Linear Gap Penalty
 Score for a gap of length x : -σ x (Naïve approach)

 Constant Gap Penalty
 Score for a gap of length x : -ρ

 Affine Gap Penalty
 Score for a gap of length x : - (ρ + σ x)
 -ρ : gap opening (existence) penalty / -σ : gap extension penalty (ρ 〉〉 σ)

Solving Constant/Affine Gap Penalty

 Edit Graph Update
 Add “long” horizontal or vertical edges to the edit graph

 Runtime ?

Improved Solution for Constant/Affine Gap Penalty

 3-Layer Grid Structure
 Middle layer (Main layer) for diagonal edges
 → Extends matches and mismatches
 Upper layer for horizontal edges
 → Creates/extends gaps in a sequence y
 Lower layer for vertical edges
 → Creates/extends gaps in a sequence x

 Gap Opening / Gap Extension
 Gap opening penalty (-ρ) for jumping from middle layer to upper/lower layer
 Gap extension penalty (-σ) for extending on upper/lower layer

Example of 3-Layer Grid

upper layer (gaps in x)

main layer (matches/mismatches)

lower layer (gaps in y)

Solving by Dynamic Programming

 Example in 3-Layer 2D Grid
 x=“GCATCTA” (m=7), y=“CGTA” (n=4)

 Recursive Formula

 Dynamic Programming Algorithm
 Implementation result?
 Runtime?

→ match / mismatch

→ continuing gap in x

→ starting gap in x

→ continuing gap in y

→ starting gap in y

1. Backgrounds

2. Manhattan Tourist Problem

3. Longest Common Subsequence Problem

4. Edit Distance

5. Global Sequence Alignment

6. Local Sequence Alignment

7. Alignment with Gap Penalty

8. Sequence Homolog Search

9. Multiple Sequence Alignment

Overview

Sequence Homolog Search

 Background
 Search similar sequences to a query sequence in a database
 Computational issues

• Dynamic programming are rigorous
• But inefficient in searching a huge database
• Need heuristic approaches

 Sequence Homolog Searching Tools
 FASTA
 BLAST

BLAST (1)

 BLAST (Basic Local Alignment Search Tool)
 DNA / protein sequence alignment tool
 Finds local alignments
 Heuristic method in sequence search
 Runs faster than FASTA

 Algorithm
(1) Makes a list of words (word pairs) from the query sequence
(2) Chooses high-scoring words
(3) Searches database for matches (hits) with the high-scoring words
(4) Extends the matches in both directions to find high-scoring segment pair (HSP)
(5) Selects the sequence which has two or more HSPs for local alignment

BLAST (2)

 DFA (Deterministic Finite Automata) Analysis
 Build DFA using high-scoring words

 Read sequences in database and trace DFA

 Output the positions for hits

 BLAST package

query sequence database

blastp protein protein

blastn DNA DNA

blastx DNA (all reading frames) protein

tblastn protein DNA (all reading frames)

tblastx DNA (all reading frames) DNA (all reading frames)

Homolog Search Results

 BLAST Search Results

 E-value
 Average number of alignments with a score of at least S that would be expected by chance

alone in searching a database of n sequences
 Ranges of E-value:
 High alignment score S
 Low alignment score S
 Factors

• Alignment score
• The number of sequences in the database
• Sequence length

 Default E-value threshold: 0.001 ~ 0.01

0 ~ n
→ Low E-value

→ High E-value

Filtering

 Low-Complexity Region
 Highly biased amino acid composition
 Lowers significant hits in sequence alignment
 BLAST filters the query sequence for low-complexity regions and mark “X”

1. Backgrounds

2. Manhattan Tourist Problem

3. Longest Common Subsequence Problem

4. Edit Distance

5. Global Sequence Alignment

6. Local Sequence Alignment

7. Alignment with Gap Penalty

8. Sequence Homolog Search

9. Multiple Sequence Alignment

Overview

Pairwise Alignment vs. Multiple Alignment

 Pairwise Sequence Alignment
 Aligning two sequences
 Sometimes two sequences are functionally similar or have a common ancestor

although they have weak sequence similarity

 Multiple Sequence Alignment
 Aligning more than two sequences simultaneously
 Finds invisible similarity in pairwise alignment

Alignment of 3 Sequences

 Alignment of 2 Sequences
 Described in a 2-row representation
 Best alignment is found in a 2-D grid by dynamic programming

 Alignment of 3 Sequences
 Described in a 3-row representation
 Example: x=“ATGTG”, y=“ACGTA”, z=“ATCTG”

 Best alignment is found in a 3-D grid by dynamic programming

A T - G T G -

A - C G T - A

A T C - T G -

x :

y :

z :

Alignment in 3-D Grid

 3-D Edit Graph
 3-D grid structure (cube) with diagonals in each cell

 Example

 Path in 3-D grid :

source

sink

A T - G T G -

A - C G T - A

A T C - T G -

x :

y :

z :

0 1 2 2 3 4 5 5

0 1 1 2 3 4 4 5

0 1 2 3 3 4 5 5

(0,0,0) → (1,1,1) → (2,1,2) → (2,2,3) → (3,3,3) → (4,4,4) → (5,4,5) → (5,5,5)

3-D Grid Unit

 2-D Grid Unit Cell
 Maximum 3 edges in each unit of 2-D grid

 3-D Grid Unit Cell
 Maximum 7 edges in each unit of 3-D grid

(i, j, k)

(i-1, j, k)

(i-1, j-1, k)

(i, j-1, k)

(i-1, j-1, k-1)

(i, j-1, k-1)

(i-1, j, k-1)

(i, j, k-1)

Solving by Dynamic Programming

 Formula

 δ (x, y, z) is the entry of 3-D scoring matrix

 Runtime ?

from 3-D Alignment to Multiple Alignment

 Alignment of k Sequences
 Able to be solved by dynamic programming in k-D grid
 Runtime ?

 Conclusion
 Dynamic programming for pairwise alignment can be extended to multiple alignment
 However, computationally impractical
 How can we solve this problem ?
 → We need heuristic algorithms!!

Heuristics of Multiple Alignment

 Background
 Implementing pairwise alignment (2-D alignment) k times is better than implementing

k-D multiple alignment once

 Heuristic Process
1) Implementing all possible pairwise alignments
2) Combining the most similar pair iteratively

 Why it is heuristic?
 Can we construct a multiple alignment that induces pairwise alignments ?

x: A C – G C G G – C
y: A C – G C – G A G
z: G C C G C – G A G

x: A C G C G G – C
y: A C G C – G A G

x: A C – G C G G – C
z: G C C G C – G A G

y: A C – G C G A G
z: G C C G C G A G

Projection of Alignments

 Projection

 Conclusion
 Can’t infer optimal multiple alignment from all optimal pairwise alignments
 Example?

Solving by Greedy Algorithm

 Process
1) Choose the most similar pair of sequences
2) Merge them into a new sequence
3) Choose the most similar sequence to the new sequence
4) Repeat (2) and (3) until choosing all sequences

 Example
 Step 1

s1: GATTCA
s2: GTCTGA
s3: GATATT
s4: GTCAGC

s2 GTCTGA
s4 GTCAGC

s1 GAT-TCA
s2 G-TCTGA

s1 GAT-TCA
s3 GATAT-T

s1 GATTCA--
s4 G-T-CAGC

s2 G-TCTGA
s3 GATAT-T

s3 GAT-ATT
s4 G-TCAGC

Solving by Greedy Algorithm – Cont’

 Example - continued
 Step 2

 Step 3

 Features
 k-way alignment (alignment of k sequences) → Runtime ?
 Greedy algorithm
 → Not optimal multiple sequence alignment

s2 GTCTGA
s4 GTCAGC

s2,4 GTCt/aGa/c
 (called profile or consensus sequence)

s1 GATTCA
s3 GATATT
s2,4 GTCt/aGa/c

Progressive Alignment

 Features
 A variation of greedy algorithm (more intelligent strategy on each step)
 Also called hierarchical method
 Uses profiles to compare sequences
 Gaps are permanent (“once a gap, always a gap”)
 Works well for close sequences

 Process
 Stage 1

• Computes sequence identity of all possible pairs of
 sequences (identity = #match / sequence length)
• Makes a similarity matrix

–

.17 –

.87 .28 –

.59 .33 .62 –

v1 v2 v3 v4 …
v1

v2

v3

v4

Progressive Alignment – Cont’

 Process
 Stage 2

• Creates a guide tree using the similarity matrix
 Stage 3

• Applies a series of pairwise alignment following the guide tree

Application of Progressive Alignment

 ClustalW / ClustalX
 Popular multiple alignment tool
 Adopts the progressive multiple alignment

FOS_RAT PEEMSVTS-LDLTGGLPEATTPESEEAFTLPLLNDPEPK-PSLEPVKNISNMELKAEPFD
FOS_MOUSE PEEMSVAS-LDLTGGLPEASTPESEEAFTLPLLNDPEPK-PSLEPVKSISNVELKAEPFD
FOS_CHICK SEELAAATALDLG----APSPAAAEEAFALPLMTEAPPAVPPKEPSG--SGLELKAEPFD
FOSB_MOUSE PGPGPLAEVRDLPG-----STSAKEDGFGWLLPPPPPPP-----------------LPFQ
FOSB_HUMAN PGPGPLAEVRDLPG-----SAPAKEDGFSWLLPPPPPPP-----------------LPFQ
 . . : ** . :.. *:.* * . * **:

Dots and stars show how well-conserved a column is

Scoring Schemes for Multiple Sequence Alignment

 Number of Matches
 Multiple longest common subsequence score
 A column is a “match” if all the letters in the column are the same

 Only good for very similar sequences

 Sum-of-Pair Scoring

 Entropy-Based Scoring

AAA …
AAG …
AAT …
ATC …

Sum-of-Pair Scoring

 Sum-of-Pairs Scoring in Multiple Alignment
 Consider pairwise alignments imposed by a multiple alignment of k sequences
 Denote the score of the pairwise alignment between ai and aj as S*(ai, aj)
 Sum up the pairwise scores for a multiple alignment:

 Example
 Aligning 4 sequences, a1, a2, a3, and a4, by

Entropy-Based Scoring

 Entropy in Information Theory
 A measure of the uncertainty associated with a random variable

 Entropy-Based Scoring in Multiple Alignment
1) Define frequencies for the occurrence of each letter on each column
2) Compute entropy of each column
3) Sum all entropies over all columns

 Example

AAA
AAG
AAT
ATC

 Lecture Slides on the Course Website, “https://ads.yonsei.ac.kr/faculty/biocomputing”

Questions?

	Sequence Alignment
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81

