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  Representation
 Graph: an ordered pair G(V,E) with a set of vertices (or nodes) V and a set of edges E

  Tasks

Network Analytics

Node-level prediction

Edge-level prediction

Subgraph-level prediction

Graph-level prediction



  Recent Tasks

Deep Learning with Networks

Input

Node-level prediction

Edge-level prediction

Subgraph-level prediction



  Extended Graph Representation
 directed graph vs. undirected graph

•  Whether each edge has a direction

 weighted graph vs. unweighted graph vs. multi-graph
•  Whether each edge has a weight or allows multiple edges

 labeled graph vs. unlabeled graph
•  Whether each vertex has a label

 0-D vs. 1-D vs. 2-D vs. 3-D graph representation
•  Whether each vertex has a specific coordinate

 homogeneous network vs. heterogeneous network
                                                      (nodes with node types, edges with relation types)
                                                      (bipartite graph, tripartite graph, … )

Network Types



Network Modeling – Random Graph Model

  Erdós and Rényi, 1960

 Random graph as N nodes connected by m edges that are randomly chosen from

    N(N-1)/2 possible edges 

 m = p[N(N-1)/2] where p is the probability of each pair of nodes being connected

 Degree distribution P(k) =             pk (1-p)N-1-k

• Degree of v: the number of links from v to other nodes

• Degree distribution P(k): probability that a node has k links

 Expected number of nodes with degree k

     E(Xk) = N P(k) = N                 pk (1-p)N-1-k = λk

N-1
k

N-1
k

→  P(Xk= r) = e-λk λk
r / r !  

     (Poisson  distribution) 



Examples of Random Graph Model

  Example

 Poisson distribution with N = 1000 and p = 0.0015



Topological Features in Random Graph Model

  Topological Features
 Connectivity

 Degree distribution

 Largest connected component

 Density (Sparsity)

 Path
 Average shortest path length

 Diameter

→ weighted graph? → directed graph?

→ directed graph? (strongly connected component)

→ directed graph?



  Watts and Strogatz, 1998
 Average shortest path length grows to log of N;   L ∝ log N

 Hub-oriented structure
 High clustering coefficient

Small-World Networks



Network Modeling – Scale-Free Model

  Barabasi and Albert, 1999

 Focused on network dynamics based on these two steps:

• Growth: networks are continuously expanded by the addition of new nodes with

    a link to the nodes already present

• Preferential attachment: the nodes are likely to be linked to high-degree nodes

 Power-law degree distribution:  P(k) ~ k    where 2 < γ < 3

 Features

• A very few high-degree nodes and many low-degree nodes

    →  scale-free degree distribution

• Very low average shortest path length

    →  small-world network

• Hub-oriented structure

    →  measuring hubness by centrality (e.g., degree, closeness)

-γ



Example of Scale-Free Model

  Example

 Power-law degree distribution with the best fit of γ =2.9 on the dashed line



Network Modeling – Modular Networks

  Modular Networks

 Dense intra-connections among the nodes in the same modules

 Sparse inter-connections between two nodes in different modules

 Verified by high average clustering coefficient

• Clustering coefficient of a node v: the density of a subgraph with neighbors of v

bridge

modular nodes

peripheral nodes



Topological Features in Modular Network Model

  Topological Features
 Centrality (Hubness) of a node

 Degree
 Closeness
 Clustering coefficient
 Eigenvector centrality

 Modularity of a graph
 Density
 Average clustering coefficient

 Bridging factor of a node/an edge
 Betweenness centrality

 Subgraph pattern of a graph
 Graphlet frequency



Topological Features in Modular Network Model

  Betweenness centrality of nodes
 Betweenness of a vertex vi, CB(vi):  the sum of the ratios of the shortest paths which 
       pass through vi 

                                            where σst is the number of shortest paths between s and t, and 

        σst(vi) is the number of shortest paths between s and t, which pass through vi

 Detects the vertices located between two clusters

  Betweenness centrality of edges
 Betweenness of an edge ei, CB(ei):  the sum of the ratios of the shortest paths which 
       pass through ei 
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Topological Features in Modular Network Model

  Graphlet (network motifs) frequency of a graph
 Graphlet: an induced, isomorphic subgraph

 Relative graphlet frequency:                                                     where 

 Graphlet-based distance: 



Network Modeling – Hierarchical Networks

  Hierarchical Networks

 Integrated of scale-free topology with modular structure

 Hierarchy of modules is controlled by hubs

 Clustering coefficient distribution C

• Scale-free network: C is independent of degree k

• Hierarchical network: C ~ k-1



Schematic View

Scale-free Networks Modular Networks Hierarchical Networks



  Definition
 An association between two nodes is represented as a “true” link
 In G(V,E), E denotes a set of observed links
 The goal of link prediction is to identify the unobserved true links. 

  Topology-based Methods
 Jaccard index of common neighbors
 Adamic-Adar measure

 Katz measure

  Feature-based Methods
 Cosine similarity of feature vectors

1. Link Prediction (Association Prediction)



  Definition
 The goal of node classification is to identify the class labels of unknown nodes. 

  Topology-based Methods
 Majority voting of neighbors’ classes, 
     called “guilt-by-association”

 Random walk (for global optimization)

2. Node Classification (Function Prediction)
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  Definition
 The goal of graph clustering is to identify a set of subgraphs 
     that are densely connected within each subgraph  (adding periphery)
     and are sparsely connected between subgraphs.
 Functional module: a group of entities having the similar functions

  Topology-based Methods
 Density-Based Clustering

 Searching for densely connected sub-graphs (local optimum)
 Partition-Based Clustering

 Searching for optimal partition of a graph (global optimum)
 Hierarchical Clustering

 Bottom-up approaches: Merging the closest nodes iteratively
 Top-down approaches: Dividing a graph into two or more sub-graphs recursively

3. Graph Clustering (Module Detection)



Examples of Graph Clustering

  Examples of Density-Based Clustering
 Clique search / Clique percolation
 k-core decomposition
 Seed-growth approaches

 Expanding seed clusters by density functions for local optimum 

  Examples of Partition-Based Clustering
 Restricted neighborhood search

 Updating the partition repeatedly by moving restricted neighbors

  Examples of Hierarchical Clustering
 Bottom-up approaches
 Top-down approaches

 Minimum cut / Edge betweenness cut



Examples of Density-Based Graph Clustering

  MCODE
1. Vertex weighting

• Uses density of k-core of the neighboring subgraph → core-clustering coefficient

2. Module prediction
• Seeds the highest weighted vertex
• Includes recursively the vertices whose weight is above a given threshold 

3. Post-processing
• “fluff” option: when a vertex is included, set the neighborhood density parameter
• “haircut” option: when a vertex is included, remove low k vertex



Examples of Density-Based Graph Clustering

  Graph Entropy
1. Seed cluster shrinking

• Removes vertices in the neighboring subgraph of a seed based on graph entropy

2. Seed cluster expansion
• Adds vertices outside the current cluster based on graph entropy

  Definition of Graph Entropy
• Inner links, Outer links

 Inner links of v in G’(V’,E’): edges from v to the vertices in V’
        →  pi(v): probability of v having inner links
 Outer links of v in G’(V’,E’): edges from v to the vertices not in V’
        →  po(v): probability of v having outer links

• Vertex entropy:  e(v) = - pi(v) log2pi(v) - po(v) log2po(v)
• Graph entropy :  e(G(V,E)) = Σv∈V e(v)



  Definition
 (Signaling) Pathway: a series of linked nodes 
                                          - a series of genes having signaling and response relationship
 Signaling network: a combined form of linear signaling pathways
                                       (a directed acyclic graph)    

  Topology-based Methods
 Strongest path search

 Listing all possible paths to select the strongest path
 Needs a heuristic algorithm (greedy search)

 Most frequent path search
 Computing the number of shortest paths 

               towards the target recursively 

4. Path Search (Pathway Identification)



  Definition
 Aligning two or more networks
 Mapping nodes that belong to the same entity 
     from different networks

  Applications
 Aligning two or more protein-protein interaction networks to

• Find ortholog pairs
• Predict cellular functions
• Predict conserved interactions
• Measure evolutionary distance between PPI networks

5. Network Alignment (Node Mapping)



  Sequence Alignment
 Aligning two or more sequences
 Searches matches (identical letters), mismatches (non-identical letters), and gaps
 Returns alignment in 2-row representation including gaps

  Network Alignment
 Aligning two or more networks
 Searches matches (orthologs), mismatches (non-orthologs), and gaps
 Returns an alignment network having ortholog pairs as nodes AND/OR 
     conserved interactions as edges
 Types

 Global network alignment vs. Local network alignment
 Pairwise network alignment vs. Multiple network alignment
 1-to-1 mapping vs. m-to-n mapping

Sequence Alignment vs. Network Alignment



  Technical Issues
 Which features are used 
 How to optimize the alignment network for multiple orthologs
 How to improve efficiency of network alignment

  PrimAlign (PageRank-Inspired Markovian Network Alignment)
 Algorithm

1. Edge weighting
2. Transition matrix building
3. PageRank-inspired stationary distribution computation
4. Inter-network traversal probability thresholding

 Experimental Results

Examples of Network Alignment Algorithms



  Lecture Slides on the Course Website, “https://ads.yonsei.ac.kr/faculty/bioinformatics”

Questions?
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