# **Frequent Pattern Mining**

### Young-Rae Cho, Ph.D.

Associate Professor Division of Software / Division of Digital Healthcare Yonsei University – Mirae Campus

### **Overview**



- 1. Market Basket Problem
- 2. Apriori Algorithm
- 3. CHARM Algorithm
- 4. Advanced Frequent Pattern Mining
- 5. Constraint-Based Mining

### **Market Basket Problem**

#### □ Example

"Customers who bought beer also bought diapers."

### Motivation

To promote sales in retail by cross-selling

### Required Data

- Customers' purchase patterns
- Items often purchased together by each customer

### Applications

- Store arrangement
- Catalog design
- Discount plans





### **Basic Terms**



### □ Transaction

A set of items which are bought by one person at one time

### Frequent Itemset

- A set of items which occur frequently across transactions
- A subset of a transaction

### Association Rule

- A one-directional relationship between two sets of items
- e.g.,  $A \rightarrow B$  where A and B are sets of items

#### □ Support

Frequency of a set of items across transactions

### □ Confidence

• For  $A \rightarrow B$ , percentage of transactions containing A that also contain B

### **Frequent Itemsets**



### Transaction Data

| T-ID | Items                      |  |
|------|----------------------------|--|
| 1    | bread, eggs, milk, diapers |  |
| 2    | coke, beer, nuts, diapers  |  |
| 3    | eggs, juice, beer, nuts    |  |
| 4    | milk, beer, nuts, diapers  |  |
| 5    | milk, beer, diapers        |  |

#### □ Support

- What is support of {beer} ? {beer, nuts} ?
- Which itemsets have 80% support ? 60% support ?

#### **Gamma** Frequent Itemsets

- Itemsets having support greater than (or equal to) a user-specified minimum support

### **Association Rules**



### Transaction Data

| T-ID | Items                      |  |
|------|----------------------------|--|
| 1    | bread, eggs, milk, diapers |  |
| 2    | coke, beer, nuts, diapers  |  |
| 3    | eggs, juice, beer, nuts    |  |
| 4    | milk, beer, nuts, diapers  |  |
| 5    | milk, beer, diapers        |  |

### □ Confidence

- What is the confidence of {beer} → {nuts}?
- Which associate rules have 100% confidence?

### □ Association Rules

• Rules having confidence greater than (or equal to) a user-specified minimum confidence

### **Solving Market Basket Problem**

#### Process

- Step 1:
  - Finding all frequent itemsets where size ≥ 2
  - based on the minimum support (min\_sup)
  - e.g. { beer, nuts, diapers }
- Step 2:
  - Generating association rules from the frequent itemsets
  - based on the minimum confidence (min\_conf)
  - e.g. { beer } → { nuts, diapers } → Expected output knowledge



### **Example of Finding Association Rules**



### **College Course Registration Data**

Courses registered on Fall 2020

| Student | Courses                                                             |  |
|---------|---------------------------------------------------------------------|--|
| John    | Artificial Intelligence, Databases, Data Mining                     |  |
| Bob     | Operating Systems, Data Comm., Bioinformatics, Data Mining          |  |
| Mary    | Graphics, Operating Systems, Data Comm., Data Mining                |  |
| David   | Artificial Intelligence, Databases, Operating Systems               |  |
| Jack    | Graphics, Artificial Intelligence, Databases                        |  |
| Lisa    | Artificial Intelligence, Operating Systems, Data Comm., Data Mining |  |

• Find all association rules with 50% min\_sup and 80% min\_conf

### **Generalized Formulas**



#### □ Association Rules

- $I = \{ I_1, I_2, \dots, I_m \}, T = \{ T_1, T_2, \dots, T_n \}, T_k \subseteq I \text{ for } \forall k$
- $A \rightarrow B$  where

 $A \subseteq I$  (A  $\neq \emptyset$ ),  $B \subseteq I$  (B  $\neq \emptyset$ ),  $A \subseteq T_i$  for  $\exists i, B \subseteq T_j$  for  $\exists j$ , and  $A \cap B = \emptyset$ 

#### **Computation of Support**

support ( $A \rightarrow B$ ) = P ( $A \cup B$ )

where 
$$P(X) = \frac{|\{T_i | X \subseteq T_i\}|}{n}$$

#### **Computation of Confidence**

confidence (
$$A \rightarrow B$$
) =  $\frac{P(A \cup B)}{P(A)}$ 

### **Problem of Support & Confidence**



#### Support Data

|            | Tea | Not Tea | SUM |
|------------|-----|---------|-----|
| Coffee     | 20  | 50      | 70  |
| Not Coffee | 10  | 20      | 30  |
| SUM        | 30  | 70      | 100 |

### □ Association Rule, {Tea} $\rightarrow$ {Coffee}

- Support ({Tea}  $\rightarrow$  {Coffee})?
- Confidence ({Tea}  $\rightarrow$  {Coffee})?

### □ Problems in this Dataset ?

### **Alternative Measures**



#### □ Coverage

coverage ( $A \rightarrow B$ ) = P (A)

#### 🗆 Lift

lift 
$$(A \rightarrow B) = \frac{\text{confidence } (A \rightarrow B)}{P(B)} = \frac{P(A \cup B)}{P(A) \times P(B)} = \text{correlation } (A, B)$$

- The association rule  $A \rightarrow B$  is interesting if lift( $A \rightarrow B$ ) > 1
- However, it is the same to correlation between A and B
- Positive correlation if lift(A,B) > 1
- Negative correlation if lift(A,B) < 1</li>
- No relationship if lift(A,B) = 1



### $\Box \chi^2$ Test (Chi-Square Test)

 Evaluates whether an observed distribution in a sample differs from a theoretical distribution (i.e., hypothesis).
 where *E<sub>i</sub>* is an expected frequency and *O<sub>i</sub>* is an observed frequency,

$$\chi^{2} = \sum_{i=1}^{n} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

- The larger  $\chi^2$ , the more likely the variables are related (positively or negatively).
- Example?

### **Overview**



- 1. Market Basket Problem
- 2. <u>Apriori Algorithm</u>
- 3. CHARM Algorithm
- 4. Advanced Frequent Pattern Mining
- 5. Constraint-Based Mining

### **Frequent Itemset Mining**

### Process to solve Market Basket Problem

- 1) Find frequent itemsets  $\rightarrow$  computational problem
- 2) Find association rules

### **□** Finding All Frequent Itemsets

- Brute Force Algorithm (Exhaustive Algorithm)
  - Enumerate all possible subsets of the total itemset, I
  - Count frequency of each subset
  - Select frequent itemsets

### □ Problem ?

- Enumerating all candidates is not computationally acceptable
  - $\rightarrow$  Efficient & scalable algorithm is required.

### **Apriori Algorithm**

### Motivations

- Efficient frequent itemset analysis
- Scalable approach

### Process of Apriori

- Iterative increment of the itemset size
  - 1) Candidate itemset generation  $\rightarrow$  computational problem
  - 2) Frequent itemset selection

#### **Downward Closure Property**

- Any superset of an itemset X cannot have higher support than X.
  - → If an itemset X is frequent (support of X is higher than min\_sup), then any subset of X should be frequent.



### **Candidate Itemset Generation**



#### Process

Two steps: (1) <u>selective joining</u> and (2) <u>a priori pruning</u>

### Selective Joining

- Each candidate itemset with size k is generated by joining two frequent itemsets with size (k-1)
- The frequent itemsets with size (k-1) which share a frequent sub-itemset with size (k-2) are joined

### □ A priori Pruning

A frequent itemset with size k which has any infrequent sub-itemsets with size (k-1) is pruned

### **Detail of Apriori Algorithm**



### Notations

- C<sub>k</sub> : Candidate itemsets of size k
- L<sub>k</sub> : Frequent itemsets of size k
- sup<sub>min</sub>: minimum support

### Pseudo Code

- 1.  $k \leftarrow 1$
- 2.  $L_k \leftarrow$  frequent itemsets with size 1
- 3. while  $L_k \neq \emptyset$  do
- 4.  $k \leftarrow k + 1$
- 5.  $C_k \leftarrow$  candidate itemsets by selective joining & a priori pruning from  $L_{(k-1)}$
- 6.  $L_k \leftarrow \text{frequent itemsets using sup}_{min}$
- 7. end while
- 8. return  $U_k L_k$

### **Example of Apriori Algorithm**





### **Summary of Apriori Algorithm**



#### □ Features

- An iterative approach of a level-wise search
- Reducing search space by downward closure property

### □ Challenges

- Multiple scan of transaction database
- Huge number of candidates
- Tedious workload of support counting

### Solutions

- Reducing transaction database scans
- Shrinking number of candidates
- Facilitating support counting

### **Overview**



- 1. Market Basket Problem
- 2. Apriori Algorithm
- 3. CHARM Algorithm
- 4. Advanced Frequent Pattern Mining
- 5. Constraint-Based Mining

### **Association Rule Mining**



### Process of Market Basket Problem

- 1) Find frequent itemsets  $\rightarrow$  computational problem
- 2) Find association rules  $\rightarrow$  redundant rule generation

#### □ Example 1

- { beer } > { nuts } ( 40% support, 75% confidence ) --
- { beer }  $\rightarrow$  { nuts, diapers } ( 40% support, 75% confidence )
- The first rule is not meaningful.

### Example 2

- { beer }  $\rightarrow$  { nuts } (60% support, 75% confidence )
- { beer, diapers }  $\rightarrow$  { nuts } (40% support, 75% confidence )
- Both rules are meaningful.

### **Frequent Closed Itemsets**

#### **General Definition of Closure**

- A frequent itemset X is **closed** if there exists no superset of X with the same support as X.
- Different from frequent maximal itemsets

### □ Frequent Closed Itemsets with Min. Support of 40%

- { milk, diapers } 60%
- <del>{ milk, beer }</del> 40%
- { beer, nuts } 60%
- { beer, diapers } 60%
- { nuts, diapers } 40%
- { milk, beer, diapers } 40%
- { beer, nuts, diapers } 40%

| T-ID | Items                      |  |
|------|----------------------------|--|
| 1    | bread, eggs, milk, diapers |  |
| 2    | coke, beer, nuts, diapers  |  |
| 3    | eggs, juice, beer, nuts    |  |
| 4    | milk, beer, nuts, diapers  |  |
| 5    | milk, beer, diapers        |  |



### **Mapping between Items and Transactions**

### Mapping Functions

- $I = \{I_1, I_2, \dots, I_m\}, T = \{T_1, T_2, \dots, T_n\}, X \subseteq I, Y \subseteq T$
- $i: T \rightarrow I$ , i(Y): itemset that is contained in all transactions in Y
- $t: I \rightarrow T$ , t(X): set of transactions (tidset) that contain all items in X

#### Properties

- $X_1 \subseteq X_2 \rightarrow t(X_1) \supseteq t(X_2)$ (e.g.) {ACW}  $\subseteq$  {ACTW}  $\rightarrow$  {1345}  $\supseteq$  {135}
- $Y_1 \subseteq Y_2 \Rightarrow i(Y_1) \supseteq i(Y_2)$ (e.g.) {245}  $\subseteq$  {2456}  $\Rightarrow$  {CDW}  $\supseteq$  {CD}
- $X \subseteq i(t(X)), Y \subseteq t(i(Y))$ (e.g.)  $t(\{AC\}) = \{1345\}, i(\{1345\}) = \{ACW\}$ (e.g.)  $i(\{134\}) = \{ACW\}, t(\{ACW\}) = \{1345\}$

| T-ID | Items         |
|------|---------------|
| 1    | A, C, T, W    |
| 2    | C, D, W       |
| 3    | A, C, T, W    |
| 4    | A, C, D, W    |
| 5    | A, C, D, T, W |
| 6    | C, D, T       |



### **Definition of Closure**

### □ Closure Operator

- $c_{it}(X) = i(t(X))$
- $c_{ti}(Y) = t(i(Y))$

### Formal Definition of Closure

- An itemset X is **closed** if  $X = c_{it}(X)$
- A tid-set Y is **closed** if  $Y = c_{ti}(Y)$





### **Examples of Closed Itemsets**

### □ Examples

•  $X = \{ACW\}$  support(X) = 67%

 $t(X) = \{1345\}, i(t(X)) = \{ACW\}$ 

- $\rightarrow$  X is closed.
- $X = \{AC\}$  support(X) = 67%

$$t(X) = \{1345\}, i(t(X)) = \{ACW\}$$

- $\rightarrow$  X is not closed.
- $X = \{ACT\}$  support(X) = 50%

$$t(X) = \{135\}, i(t(X)) = \{ACTW\}$$

- $\rightarrow$  X is not closed.
- X = {CT} support(X) = 67%
  - $t(X) = \{1356\}, i(t(X)) = \{CT\}$
  - $\rightarrow$  X is closed.

| T-ID | Items         |  |
|------|---------------|--|
| 1    | A, C, T, W    |  |
| 2    | C, D, W       |  |
| 3    | A, C, T, W    |  |
| 4    | A, C, D, W    |  |
| 5    | A, C, D, T, W |  |
| 6    | C, D, T       |  |



### **CHARM Algorithm**



#### Motivations

- Efficient frequent closed itemset analysis
- Non-redundant rule generation

#### □ Property

- Simultaneous exploration of itemset space and tid-set space
- Not enumerating all possible subsets of a closed itemset
- Early pruning strategy for infrequent and non-closed itemsets

### Process of CHARM

- for each itemset pair
  - 1) Computing the frequency of their union set
  - 2) Pruning all infrequent and non-closed branches

### **Frequency Computation**

#### Operation

- Tid-set of the union of two itemsets, X<sub>1</sub> and X<sub>2</sub>
- Intersection of two tid-sets, t (X<sub>1</sub>) and t (X<sub>2</sub>)

 $t(X_1 \cup X_2) = t(X_1) \cap t(X_2)$ 

### □ Example

- $X_1 = \{AC\}, X_2 = \{D\}$
- $t(X_1 \cup X_2) = t(\{ACD\}) = \{45\}$
- $t(X_1) \cap t(X_2) = \{1345\} \cap \{2456\} = \{45\}$

| T-ID | Items         |  |
|------|---------------|--|
| 1    | A, C, T, W    |  |
| 2    | C, D, W       |  |
| 3    | A, C, T, W    |  |
| 4    | A, C, D, W    |  |
| 5    | A, C, D, T, W |  |
| 6    | C, D, T       |  |



### **Pruning Strategy**



### Pruning non-closed itemsets

• Suppose two itemsets  $X_1 \le X_2$ 

(1)  $t(X_1) = t(X_2) \rightarrow t(X_1) \cap t(X_2) = t(X_1) = t(X_2)$ 

 $\rightarrow$  Replace X<sub>1</sub> with (X<sub>1</sub> U X<sub>2</sub>), and prune X<sub>2</sub>

(2) 
$$t(X_1) \subset t(X_2) \rightarrow t(X_1) \cap t(X_2) = t(X_1) \neq t(X_2)$$
  
 $\rightarrow$  Replace  $X_1$  with  $(X_1 \cup X_2)$ , and keep  $X_2$ 

(3)  $t(X_1) \supset t(X_2) \rightarrow t(X_1) \cap t(X_2) = t(X_2) \neq t(X_1)$  $\rightarrow$  Replace  $X_2$  with  $(X_1 \cup X_2)$ , and keep  $X_1$ 

(4) 
$$t(X_1) \neq t(X_2) \rightarrow t(X_1) \cap t(X_2) \neq t(X_1) \neq t(X_2)$$
  
 $\rightarrow$  Keep  $X_1$  and  $X_2$ 

### **Example of CHARM Algorithm**





### Example of CHARM Algorithm – cont'





### Summary of CHARM Algorithm



### □ Advantages

- No need multiple scan of transaction database
  - $\rightarrow$  Revision and enhancement of Apriori algorithm
- No loss of information

### References

- Zaki, M.J., "Generating Non-Redundant Rule Generation", In Proceedings of ACM SIGKDD (2000)
- Zaki, M.J. and Hsiao, C.-J., "CHARM: An Efficient Algorithm for Closed Itemset Mining", In Proceedings of SDM (2002)

### **Overview**



- 1. Market Basket Problem
- 2. Apriori Algorithm
- 3. CHARM Algorithm
- 4. Advanced Frequent Pattern Mining
- 5. Constraint-Based Mining

### **Frequent Pattern Mining**

# \_\_\_\_\_

### **Definition**

- Discovering frequent patterns
  - patterns (sets of items, sub-sequences, sub-structures, etc.) that occur frequently in a data set

### Motivation

- Finding inherent regularities in data
  - e.g., What products were often purchased together?
  - e.g., What are the subsequent purchases after buying a PC?
  - e.g., What kinds of DNA sequences are sensitive to this new drug?
  - e.g., Can we find web documents similar to my research?

### □ Applications

Market basket analysis, DNA sequence analysis, Web log analysis



### Why Frequent Pattern Mining?



### □ Importance

- A frequent pattern is an intrinsic and important property of data sets
- Foundation for many essential data mining tasks
  - Association, correlation, and causality analysis
  - Sequential, structural (sub-graph) pattern analysis
  - Pattern analysis in spatiotemporal, multimedia, time-series, and stream data
  - Classification: discriminative, frequent pattern analysis
  - Cluster analysis: frequent pattern-based clustering
  - Data pre-processing: data reduction and compression
  - Data warehousing: iceberg cube computation

### Sampling Approach



#### Motivation

- Problem: Typically huge data size
- Mining a subset of the data to reduce candidate search space
- Trade-off some degree of accuracy against efficiency

#### Process

- 1) Selecting a set of random samples from the original database
- 2) Mining frequent itemsets with the set of samples using Apriori
- 3) Verifying the frequent itemsets on the border of closure of frequent itemsets

### □ Reference

• Toivonen, H., "Sampling large databases for association rules." In Proceedings of VLDB (1996)

### **Partitioning Approach**



### Motivation

- Problem: Typically huge data size
- Partitioning data to reduce candidate search space

### Process

- 1) Partitioning database and find local frequent patterns
- 2) Consolidating global frequent patterns

### □ Reference

 Savasere, A., Omiecinski, E. and Navathe, S., "An efficient algorithm for mining association in large databases." In Proceeding of VLDB (1995)

### **Hashing Approach**



#### Motivation

- Problem: A very large number of candidates generated
- The process in the initial iteration (e.g., size-2 candidate generation) dominates the total execution cost
- Hashing itemsets to reduce the size of candidates

#### Process

- 1) Hashing itemsets into several buckets in a hash table
- 2) If a k-itemset whose corresponding hashing bucket count is below the min support, then it cannot be frequent, thus should be removed

#### □ Reference

 Park, J.S., Chen, M.S. and Yu, P., "An efficient hash-based algorithm for mining association rules." In Proceedings of SIGMOD (1995)

### Pattern Growth Approach



### Motivation

- Problem: A very large number of candidates generated
- Finding frequent itemsets without candidate generation
- Grows short patterns to long ones using local frequent items only
- Depth-first search (Apriori: Breadth-first search, Level-wise search)

### □ Example

- "abc" is a frequent pattern
- "d" is a frequent item → "abcd" is a frequent pattern ?

### □ Reference

 Han, J., Pei, J. and Yin, Y. "Mining frequent patterns without candidate generation." In Proceedings of SIGMOD (2000)

### **FP(Frequent Pattern)-Tree**

#### □ FP-Tree Construction Process

- 1) Scan DB once to find all frequent 1-itemsets
- 2) Sort frequent items in a descending order of support, called f-list
- 3) Scan DB again to construct FP-tree

#### Example





### **Benefits of FP-Tree Structure**

#### □ Compactness

- Remove irrelevant (infrequent) items
- Reduce common prefix items of patterns
- Order items in the descending order of support
  - $\rightarrow$  The more frequently occurring, the more likely to be shared.
- Never be larger than the original database

#### Completeness

- Preserve complete information of frequent patterns
- Never break any long patterns



### **Conditional Pattern Bases**



### Conditional Pattern Base Construction Process

- 1) Traverse the FP-tree by following the link of each frequent item p
- 2) Accumulate all prefix paths of p to form p's conditional pattern base

#### □ Example



| item | conditional pattern base |
|------|--------------------------|
| f    | -                        |
| С    | <i>f</i> :3              |
| а    | fc:3                     |
| b    | fca:1, f:1, c:1          |
| т    | fca:2, fcab:1            |
| р    | fcam:2, cb:1             |

### **Conditional FP-Trees**



#### **Conditional FP-Tree Construction Process**

- For each pattern base,
  - 1) Accumulate the count for each item
  - 2) Construct the conditional FP-tree with frequent items of the pattern base

#### □ Example



### Pattern Growth Mining Algorithm



### □ Algorithm

- 1) Construct FP tree
- For each frequent item, construct its conditional pattern-base, and then its conditional FP-tree
- 3) Repeat (2) recursively on each newly created conditional FP-tree until the resulting FPtree is empty, or it contains only a single path
- 4) The single path will generate all the combinations of its sub-paths, each of which is a frequent pattern

### □ Advanced Techniques

- To fit an FP-tree in memory, partitioning a database into a set of projected databases
- Efficient mining of the FP-tree for each projected database

### **Overview**



- 1. Market Basket Problem
- 2. Apriori Algorithm
- 3. CHARM Algorithm
- 4. Advanced Frequent Pattern Mining
- 5. Constraint-Based Mining

### **Constraint-based Mining**



### Motivation

- Finding all the patterns (association rules) in a database?
  - ightarrow Too many, diverse patterns
- Users can give directions (constraints) for mining patterns

### □ Features

- User flexibility
  - Users can provide any constraints on what to be mined
- System optimization
  - It reduces the search space for efficient mining

### **Constraint Types**



### □ Knowledge Type Constraints

• Association, Classification, etc.

### Data Constraints

Selecting data having specific values using SQL-like queries

### **Dimension/Level Constraints**

Selecting specific dimensions or levels of the concept hierarchies

#### □ Interestingness Constraints

• Using interestingness measures, ex, support, confidence, coverage, lift, correlation

#### **Rule Constraints**

Specifying rules to be mined

### **Rule Constraint Types**



### Anti-monotonic Constraints

• If a constraint c is violated, then its further mining is terminated

### **D** Monotonic Constraints

• If a constraint c is satisfied, then its further mining is redundant

#### Succinct Constraints

• The itemsets satisfying a constraint c can be directly generated

#### **Convertible Constraints**

 A constraint c is not monotonic nor anti-monotonic, but it can be converted if items are properly ordered

## **Anti-Monotonicity in Constraints**

### □ Definition

For an anti-monotonic constraint c, 

if an itemset S violates c, so does any of its supersets. if a pattern satisfies c, all of its sub-patterns satisfy c too.

### **Examples**

- $count(S) < 3 \rightarrow Anti-monotonic$
- $count(S) \ge 4$  $\rightarrow$  **Not** anti-monotonic
- sum(S.price)  $\leq$  100  $\rightarrow$  Anti-monotonic
- sum(S.price)  $\geq$  150  $\rightarrow$  **Not** anti-monotonic
- $\rightarrow$  **Not** anti-monotonic  $sum(S.profit) \le 80$
- $support(S) \ge 2$  $\rightarrow$  Anti-monotonic

| TID | Transaction      |  |
|-----|------------------|--|
| 10  | a, b, c, d, f    |  |
| 20  | b, c, d, f, g, h |  |
| 30  | a, c, d, e, f    |  |
| 40  | c, e, f, g       |  |

| ltem | Price | Profit |
|------|-------|--------|
| а    | 100   | 40     |
| b    | 50    | 0      |
| С    | 60    | -20    |
| d    | 80    | 10     |
| е    | 100   | -30    |
| f    | 70    | 30     |
| g    | 95    | 20     |
| h    | 100   | -10    |



| а | 100 |
|---|-----|
| b | 50  |
| С | 60  |
| d | 80  |
| е | 100 |
| f | 70  |

### **Monotonicity in Constraints**

### **Definition**

• For a monotonic constraint c,

if an itemset S satisfies c, so does any of its supersets.

if a pattern satisfies c, all of its super-patterns satisfy c too.

### □ Examples

- $count(S) \ge 2 \rightarrow Monotonic$
- sum(S.price)  $\leq 100 \rightarrow$  **Not** monotonic
- sum(S.price)  $\geq$  150  $\rightarrow$  Monotonic
- sum(S.profit)  $\geq$  100  $\rightarrow$  **Not** monotonic
- min(S.price)  $\leq$  80  $\rightarrow$  Monotonic
- min(S.price) > 70 → Not monotonic

| TID | Transaction      |  |
|-----|------------------|--|
| 10  | a, b, c, d, f    |  |
| 20  | b, c, d, f, g, h |  |
| 30  | a, c, d, e, f    |  |
| 40  | c, e, f, g       |  |

| ltem | Price | Profit |
|------|-------|--------|
| а    | 100   | 40     |
| b    | 50    | 0      |
| С    | 60    | -20    |
| d    | 80    | 10     |
| е    | 100   | -30    |
| f    | 70    | 30     |
| g    | 95    | 20     |
| h    | 100   | -10    |



### **Converting Constraints**

### Definition

- A constraint c is convertible,
  - if c is not anti-monotonic nor monotonic,
  - but c becomes anti-monotonic or monotonic
  - when items are properly ordered.
- Anti-monotonic convertible if ...
- Monotonic convertible if ...
- Strongly convertible if ...

### □ Examples

- avg(S.price) > 80
  - ightarrow Neither anti-monotonic nor monotonic
  - ightarrow if items are in a value-descending order
    - <a, e, h, g, d, f, c, b>, then anti-monotonic
  - ightarrow if items are in a value-ascending order
    - <b, c, f, d, g, a, e, h>, then monotonic
  - ightarrow strongly convertible

| TID | Transaction      |  |
|-----|------------------|--|
| 10  | a, b, c, d, f    |  |
| 20  | b, c, d, f, g, h |  |
| 30  | a, c, d, e, f    |  |
| 40  | c, e, f, g       |  |

| ltem | Price | Profit |
|------|-------|--------|
| а    | 100   | 40     |
| b    | 50    | 0      |
| С    | 60    | -20    |
| d    | 80    | 10     |
| е    | 100   | -30    |
| f    | 70    | 30     |
| g    | 95    | 20     |
| h    | 100   | -10    |



### **Anti-Monotonic Constraints in Apriori**

#### Handling Anti-monotonic Constraints

- Can apply apriori pruning
- Example: sum(S.price) < 5</li>





### **Monotonic Constraints in Apriori**



Sup.

### Handling Monotonic Constraints

- Cannot apply apriori pruning
- Example: sum(S.price) ≥ 3



 $L_1$ 

Itemset

## **Examples of Constraints**



| Constraint                                      | Anti-Monotone | Monotone    |
|-------------------------------------------------|---------------|-------------|
| v∈S                                             | no            | yes         |
| S⊇V                                             | no            | yes         |
| S⊆V                                             | yes           | no          |
| min(S) ≤ v                                      | no            | yes         |
| min(S) ≥ v                                      | yes           | no          |
| max(S) ≤v                                       | yes           | no          |
| max(S) ≥v                                       | no            | yes         |
| count(S) ≤ v                                    | yes           | no          |
| count(S) ≥ v                                    | no            | yes         |
| $sum(S) \leq v (a \in S, a \geq 0)$             | yes           | no          |
| $sum(S) \ge v (a \in S, a \ge 0)$               | no            | yes         |
| range(S) ≤ v                                    | yes           | no          |
| range(S) ≥ v                                    | no            | yes         |
| $avg(S) \theta v, \theta \in \{=, \leq, \geq\}$ | convertible   | convertible |
| support(S)≥ ξ                                   | yes           | no          |
| support(S) ≤ξ                                   | no            | yes         |

### **Scope of Constraints**





### **Questions?**



□ Lecture Slides on the Course Website, "https://it.yonsei.ac.kr/adslab/faculty/data\_mining"

