Graph Data Mining

Young-Rae Cho, Ph.D.

Associate Professor Division of Software / Division of Digital Healthcare Yonsei University – Mirae Campus

Graph Representation

□ Graph

• An ordered pair G(V,E) with a set of vertices V and a set of edges E

Extended Graph Representation

- Directed vs. undirected graph
 - Whether each edge has a direction
- Weighted vs. unweighted graph
 - Whether each edge has a weight
- Labeled vs. unlabeled graph
 - Whether each vertex has a label
- 0-D vs. 1-D vs. 2-D vs. 3-D graph representation
 - Whether each vertex has a specific coordinate

Why Graph Data Mining is Important?

Data are often represented as a graph

- Biological networks
- Chemical compounds
- Internet
- WWW
- Electric circuits
- Workflows
- Social networks

□ Graph is a general model for data mining !!

Graph Data Mining Topics (1)

□ Single Graph Mining

- Frequent sub-graph pattern mining
 - Finding sub-graphs that frequently occur in a graph
- Graph clustering (Vertex clustering)
 - Partitioning a graph into sub-graphs
- Vertex classification
 - Classifying a vertex in a graph

Graph Data Mining Topics (2)

Graph Dataset Mining

- Frequent sub-graph pattern mining
 - Finding sub-graphs that frequently occur among graphs
- Graph data clustering
 - Grouping similar graphs
- Graph data classification
 - Classifying a new graph

Applications

□ Applications of Single Graph Mining

- Biological network analysis
- Social network analysis
- Web community analysis

Applications of Graph Dataset Mining

- Biochemical structure analysis
- Program control flow analysis
- XML structure analysis

□ Challenges

- Finding the complete set satisfying the minimum support threshold
- Developing efficient and scalable algorithms
- Incorporating various kinds of user-specific constraints

Overview

- 1. **General Definitions**
- 2. Graph Clustering
- 3. Subgraph Pattern Mining

Connectivity

Degree

- Degree of a vertex, deg(v_i): the number of links from v_i to other vertices
- Incoming degree and outgoing degree for directed graphs
- Weighted degree (sum of the weights of the edges directly connected) for weighted graphs

□ A set of Neighbors

- A set of neighbors of a vertex, N(v_i): a set of vertices directly linked to the vertex v_i
- Also called adjacent neighbors or direct neighbors

Degree Distribution

- Degree distribution of a graph G: Probability that a vertex in G has exactly k links, P(k)
- The number of vertices whose degree is k over the total number of vertices in G

Length & Size

□ Walk

• A sequence of vertices such that each is linked to its succeeding one

Path

• A walk such that each vertex in the walk is distinct

Path Length

The number of edges in path p

Geodesic Schultz Schultz and Path Schultz Sch

A path with the smallest length out of all paths from v_i to v_i

Characteristic Path Length

 Characteristic path length of a graph G: average length of the shortest paths between each pair of vertices in G

Diameter

 Diameter of a graph G: largest length of the shortest paths between each pair of vertices in G

Density

Density

• Density of a graph G: the number of actual edges in G over the number of all possible edges

•
$$D(G) = \frac{2|E|}{|V|(|V|-1)}$$
 where G(V,E)

• The range of density?

□ Clique

- A fully connected graph (also called, complete graph)
- D(G) = 1

Quasi-Clique

- Close to clique
- A densely connected sub-graph
- D(G) > θ where θ is a user-specified threshold

Modularity

Clustering Coefficient

 Clustering coefficient of a vertex v_i: The density of a sub-graph G'(V',E') where V' is the set of neighbors of v_i

•
$$C(v_i) = \frac{\left|\bigcup_{v_j, v_k \in N(v_i)} \left\{ \langle v_j, v_k \rangle \right\}\right|}{|N(v_i)| (|N(v_i)| - 1)}$$

- The range of a clustering coefficient?
- Measuring the effectiveness of v_i on denseness

Average Clustering Coefficient

- Average clustering coefficient of a graph G: the average of the clustering coefficients of all vertices in G
- The range of an average clustering coefficient?
- Measuring the modularity of G

Centrality

Closeness

Closeness of a vertex v_i, C_c(v_i): the inverse of the sum of shortest path length between v_i and all vertices in the graph

• $C_C(v_i) = \frac{1}{\sum_{v_j \in V} |p_s(v_i, v_j)|}$ where $|p_s(v_i, v_j)|$ is the shortest path length between v_i and v_j

• Detects the vertices located in the center of a graph

Betweenness

 Betweenness of a vertex v_i, C_B(v_i): the sum of the ratios of the shortest paths which pass through v_i

• $C_B(v_i) = \sum_{s \neq v_i \neq t \in V} \frac{\sigma_{st}(v_i)}{\sigma_{st}}$ where σ_{st} is the number of shortest paths between s and t, and

 $\sigma_{st}(v_i)$ is the number of shortest paths between s and t, which pass through v_i

Detects the vertices located between two clusters

Overview

- 1. General Definitions
- 2. Graph Clustering
- 3. Subgraph Pattern Mining

Graph Clustering

Problem Definition

- Finding a set of sub-graphs G'(V',E') from a graph G(V,E)
 - Clusters: the sub-graphs
 - Clustering criteria: dense intra-connections and sparse interconnections between

the sub-graphs \rightarrow modularity

Components (vertices or edges) are overlapping vs. non-overlapping?

Image: Methods

- Density-based methods
- Partition-based methods
- Hierarchical methods

Overview

- 1. General Definitions
- 2. Graph Clustering
 - Density-Based Methods
 - Partition-Based Methods
 - Hierarchical Methods
- 3. Subgraph Pattern Mining

Maximal Clique Algorithm

Imain Idea

- Find all maximum-sized cliques
- How to find all maximum-sized cliques?

□ Example

Use of the anti-monotonic property

Size-2 cliques: {*AB*}, {*AC*}, {*AE*},

Size-3 cliques: {*ABC*}, {*ACE*},

Size-4 cliques: {*JKLM*}

Clique Percolation Algorithm

Definitions

- Two k-cliques are adjacent if they share (k-1) vertices where k is the number of vertices in each clique
- A k-clique chain is a sub-graph comprising the union of a sequence of adjacent k cliques

Process

- 1) Find all k-cliques
- 2) Find all maximal k-clique chains by iterative merging adjacent k-cliques

□ Reference

 Palla, G., et al., "Uncovering the overlapping community structure of complex networks in nature and society", Nature (2005)

k-Core Decomposition Algorithm

Definition

• k-core is a sub-graph by pruning all vertices whose degree is less than k

□ Process

□ Reference

• Wuchy, S. and Almaas, E., "Peeling the yeast protein network", Proteomics (2005)

Seed Growth Algorithms

Main Idea

- Search for local optimization from a seed vertex
 - ightarrow Local greedy algorithm
- Grow a sub-graph from a seed vertex to optimize a modularity (density) function
- Types of seed vertices
 - Random seeds: selected randomly
 - Core seeds: selected by degree or clustering coefficient

Process

- 1) Select a vertex (seed) as an initial cluster S
- 2) Add a neighbor of a vertex in S repeatedly if addition increases modularity
- 3) Return S if modularity does not increase or modularity > threshold
- 4) Repeat (1), (2) and (3) to find a set of clusters

Graph Entropy Algorithm (1)

Main Idea

- An example of seed-growth algorithms
- Use Graph Entropy as the modularity function
- Find the minimum graph entropy during seed growth

Definitions

- Inner links, Outer links
 - Inner links of v in G'(V',E'): edges from v to the vertices in V'
 - $\rightarrow p_i(v)$: probability of v having inner links
 - Outer links of v in G'(V',E'): edges from v to the vertices not in V' $\rightarrow p_0(v)$: probability of v having outer links
- Vertex entropy: $e(v) = -p_i(v) \log_2 p_i(v) p_o(v) \log_2 p_o(v)$
- Graph entropy : $e(G(V,E)) = \Sigma_{v \in V} e(v)$

Graph Entropy Algorithm (2)

□ Example

Process

- 1) Select a seed vertex, and include all neighbors of the seed vertex into a seed cluster
- 2) Iteratively remove a neighbor if removal decreases graph entropy
- 3) Iteratively add a vertex on the outer boundary of a current cluster if addition decreases graph entropy
- 4) Output the cluster with the minimal graph entropy
- 5) Repeat (1), (2), (3), and (4) until no seed vertex remains

□ Reference

 Kenley, E.C. and Cho, Y.-R., "Detecting protein complexes and functional modules from protein interaction networks: a graph entropy approach", Proteomics (2011)

Overview

- 1. General Definitions
- 2. Graph Clustering
 - Density-Based Methods
 - Partition-Based Methods
 - Hierarchical Methods
- 3. Subgraph Pattern Mining

Restricted Neighborhood Search (1)

Main Idea

- Random partition and iterative moves of vertices to find the best global modularity
- Types of moves
 - Global move: moving a random vertex to a random cluster
 - Intensification move: moving in the restricted neighborhood (vertices on the boundary of partitions)

Process

- 1) Randomly partition the graph into k sub-graphs
- 2) Make an intensification move of a random vertex if this move improves modularity
- 3) Repeat (2) until finding the best modularity

Restricted Neighborhood Search (2)

Example

• Use the number of interconnecting edges between clusters as a modularity function

□ Reference

• King, A., et al., "Protein complex prediction via cost-based clustering" Bioinformatics (2004)

Overview

- 1. **General Definitions**
- 2. Graph Clustering
 - Density-Based Methods
 - Partition-Based Methods
 - Hierarchical Methods
- 3. Subgraph Pattern Mining

Bottom-Up vs. Top-Down

Bottom-Up (Agglomerative) Approaches

- Start with each vertex as a cluster
- Iteratively merge the closest clusters
- Require a distance function between two clusters

D Top-Down (Divisive) Approaches

- Start with the whole graph as a cluster
- Recursively divide up the clusters
- Require a cutting algorithm

Merging by Shortest Path Length

Main Idea

Agglomerative approach using single-link distance

Process

- Select two closest vertices from different clusters based on the shortest path length between them
- 2) Merge two clusters that include the selected vertices
- 3) Repeat (1) and (2) until the shortest path length reaches a threshold

Merging by Common Neighbors

Main Idea

- Agglomerative approach using similarity based on common neighbors
 - \rightarrow More common neighbors two vertices share, more similar they are

Process

- 1) Find the most similar vertices from different clusters based on a similarity function
- 2) Merge the two clusters if the merged cluster reaches a density threshold
- 3) Repeat (1) and (2) until no more clusters can be merged

Similarity Functions

- Jaccard coefficient: $S(x, y) = \frac{|N(x) \cap N(y)|}{|N(x) \cup N(y)|}$
- $S(x, y) = \frac{|N(x) \cap N(y)|^2}{|N(x)| \cdot |N(y)|}$

- Geometric coefficient:
- Dice coefficient: $S(x, y) = \frac{2 |N(x) \cap N(y)|}{|N(x)| + |N(y)|}$
- Simpson coefficient:

 $S(x, y) = \frac{|N(x) \cap N(y)|}{\min(|N(x)|, |N(y)|)}$

Merging by Statistical Significance

Statistical Similarity Function

Hyper-geometric P-value:

V is the total number of vertices, X = |N(x)|, Y = |N(y)|, $Z = |N(x) \cap N(y)|$ for vertices x and y

Process

- 1) Find the vertices with the smallest P-value
- 2) Merge two clusters that include the selected vertices
- 3) Repeat (1) and (2) until no more clusters can be merged

□ Reference

 Samanta, M.P. and Liang, S., "Predicting protein functions from redundancies in large-scale protein interaction networks" PNAS (2003)

Minimum Cut

Definitions

- Cut: a set of edges whose removal disconnects the graph
- Minimum cut: a cut with minimum number of edges

Minimum size threshold

Betweenness Cut

Definitions

- Betweenness of a vertex: measurement of vertices located between clusters
- Betweenness of an edge: measurement of edges located between clusters

Process

- Iteratively eliminate a vertex or an edge with the highest Betweenness value until the graph is separated
- 2) Recursively apply (1) into each subgraph
- 3) Repeat (1) and (2) until all subgraphs reach a density threshold

□ Reference

 Dunn, R., et al., "The use of edge-betweenness clustering to investigate biological function in protein interaction networks" BMC Bioinformatics (2005)

Dividing by Common Neighbors

Main Idea

- Divisive approach using the dissimilarity based on common neighbors
 - \rightarrow Less common neighbors two vertices share, more dissimilar they are

Process

- 1) Iteratively eliminate the edge between the most dissimilar vertices based on a similarity function, until the graph is separated
- 2) Recursively apply (1) into each subgraph
- 3) Repeat (1) and (2) until all subgraphs reach a density threshold

□ Reference

• Radicchi, F., et al., "Defining and identifying communities in networks" PNAS (2004)

Overview

- 1. General Definitions
- 2. Graph Clustering
- 3. Subgraph Pattern Mining

Subgraph Patterns from Graph Dataset

Properties

- Anti-monotonic property \rightarrow Apriori algorithm
- If a sub-graph G is not frequent, then none of the super-graphs of G are frequent

Example

Subgraph Patterns from a Single Graph

Properties

- Frequent sub-graph pattern mining in a graph
 - \rightarrow Not follow the anti-monotonic property !
- Even if a sub-graph G is not frequent, some of the super-graphs of G might be frequent

Example

- Suppose minimum support is 10
- How many ?
 How many ?

FSG (Frequent Sub-Graph discovery)

Main Idea

• Apply the Apriori-like process to graph datasets to detect frequent sub-graph patterns

Process

- 1) Initially, find all frequent size-3 sub-graphs
- 2) Generate candidate size-(k+1) sub-graphs from frequent size-k sub-graphs
- 3) Count support of each candidate sub-graph to select frequent sub-graphs
- 4) Repeat (2) and (3) until no frequent sub-graph or no candidate is found

Generating Candidate Sub-Graphs

□ Selective Joining

- (Main idea) Join two size-k sub-graphs if they share a size-(k-1) sub-graph
- Join the same size-k sub-graphs too
- Produce multiple distinct size-(k+1) sub-graphs

Counting Support of Sub-Graphs

Support Computation

• Detect any isomorphic structure of each candidate sub-graph in the graph dataset

□ Isomorphic Graphs

- If two graphs are isomorphic, then they are structurally identical
- Example

Summary of FSG Algorithm

□ Strength

Apriori pruning

□ Weakness

- Generates a huge set of candidate sub-graphs
- Requires multiple scans of database
- Inefficient for mining large-sized sub-graph patterns
- Needs efficient finding of isomorphic graphs to count support

□ Reference

• Kuramochi, M. and Karypis, G., "Frequent subgraph discovery." In Proceedings of ICDM (2001)

Structural Isomorphism of Unlabeled Graphs

Structural Isomorphism of Labeled Graphs

Examples

Canonical Adjacency Matrix

Canonical Adjacency Matrix

□ Canonical Code

• x1110x100y11z0z

Х				
1	х			
1	1	у		
1	0	1	Z	
0	0	1	0	Z

FFSM (Fast frequent sub-graph mining)

Main Idea

Use canonical adjacency matrices for selective joining and support counting

□ Reference

 Huan, J., Wang, W. and Prins, J., "Efficient mining of frequent subgraph in the presence of isomorphism." In Proceedings of ICDM (2003)

Questions?

□ Lecture Slides on the Course Website, "https://ads.yonsei.ac.kr/faculty/data_mining"

