
Graph Data Mining

Young-Rae Cho, Ph.D.
Associate Professor
Division of Software / Division of Digital Healthcare
Yonsei University – Mirae Campus

 Graph
 An ordered pair G(V,E) with a set of vertices V and a set of edges E

 Extended Graph Representation
 Directed vs. undirected graph

• Whether each edge has a direction

 Weighted vs. unweighted graph
• Whether each edge has a weight

 Labeled vs. unlabeled graph
• Whether each vertex has a label

 0-D vs. 1-D vs. 2-D vs. 3-D graph representation
• Whether each vertex has a specific coordinate

Graph Representation

 Data are often represented as a graph
 Biological networks
 Chemical compounds
 Internet
 WWW
 Electric circuits
 Workflows
 Social networks

 Graph is a general model for data mining !!

Why Graph Data Mining is Important?

 Single Graph Mining
 Frequent sub-graph pattern mining

• Finding sub-graphs that frequently occur in a graph

 Graph clustering (Vertex clustering)
• Partitioning a graph into sub-graphs

 Vertex classification
• Classifying a vertex in a graph

Graph Data Mining Topics (1)

 Graph Dataset Mining
 Frequent sub-graph pattern mining

• Finding sub-graphs that frequently occur among graphs

 Graph data clustering
• Grouping similar graphs

 Graph data classification
• Classifying a new graph

Graph Data Mining Topics (2)

id graph

1

2

3

4

 Applications of Single Graph Mining
 Biological network analysis
 Social network analysis
 Web community analysis

 Applications of Graph Dataset Mining
 Biochemical structure analysis
 Program control flow analysis
 XML structure analysis

 Challenges
 Finding the complete set satisfying the minimum support threshold
 Developing efficient and scalable algorithms
 Incorporating various kinds of user-specific constraints

Applications

1. General Definitions

2. Graph Clustering

3. Subgraph Pattern Mining

Overview

 Degree
 Degree of a vertex, deg(vi): the number of links from vi to other vertices
 Incoming degree and outgoing degree for directed graphs
 Weighted degree (sum of the weights of the edges directly connected) for weighted graphs

 A set of Neighbors
 A set of neighbors of a vertex, N(vi): a set of vertices directly linked to the vertex vi

 Also called adjacent neighbors or direct neighbors

 Degree Distribution
 Degree distribution of a graph G: Probability that a vertex in G has exactly k links, P(k)
 The number of vertices whose degree is k over the total number of vertices in G

Connectivity

 Walk
 A sequence of vertices such that each is linked to its succeeding one

 Path
 A walk such that each vertex in the walk is distinct

 Path Length
 The number of edges in path p

 Shortest Path between vi and vj

 A path with the smallest length out of all paths from vi to vj

 Characteristic Path Length
 Characteristic path length of a graph G: average length of the shortest paths between

each pair of vertices in G
 Diameter

 Diameter of a graph G: largest length of the shortest paths between each pair of vertices
in G

Length & Size

 Density
 Density of a graph G: the number of actual edges in G over the number of all possible edges

 where G(V,E)

 The range of density?

 Clique
 A fully connected graph (also called, complete graph)
 D(G) = 1

 Quasi-Clique
 Close to clique
 A densely connected sub-graph
 D(G) > θ where θ is a user-specified threshold

Density

)1|(|||
||2)(
−

=
VV
EGD

 Clustering Coefficient
 Clustering coefficient of a vertex vi: The density of a sub-graph G’(V’,E’) where V’ is

the set of neighbors of vi



 The range of a clustering coefficient?

 Measuring the effectiveness of vi on denseness

 Average Clustering Coefficient
 Average clustering coefficient of a graph G: the average of the clustering coefficients of

all vertices in G
 The range of an average clustering coefficient?
 Measuring the modularity of G

Modularity

{ }
()1|)(||)(|

,
)(

)(,

−
=

∈

ii

vNvv kj

i vNvN

vv
vC ikj



 Closeness
 Closeness of a vertex vi, Cc(vi): the inverse of the sum of shortest path length between

vi and all vertices in the graph

 where |ps(vi,vj)| is the shortest path length between vi and vj

 Detects the vertices located in the center of a graph

 Betweenness
 Betweenness of a vertex vi, CB(vi): the sum of the ratios of the shortest paths which

pass through vi

 where σst is the number of shortest paths between s and t, and

σst(vi) is the number of shortest paths between s and t, which pass through vi

 Detects the vertices located between two clusters

Centrality

|),(|
1)(

∑ ∈

=
Vv jis

iC

j
vvp

vC

∑
∈≠≠

=
Vtvs st

ist
iB

i

vvC
σ

σ)()(

1. General Definitions

2. Graph Clustering

3. Subgraph Pattern Mining

Overview

 Problem Definition
 Finding a set of sub-graphs G’(V’,E’) from a graph G(V,E)

• Clusters: the sub-graphs
• Clustering criteria: dense intra-connections and sparse interconnections between

the sub-graphs → modularity
 Components (vertices or edges) are overlapping vs. non-overlapping?

 Methods
 Density-based methods
 Partition-based methods
 Hierarchical methods

Graph Clustering

1. General Definitions

2. Graph Clustering

 Density-Based Methods

 Partition-Based Methods

 Hierarchical Methods

3. Subgraph Pattern Mining

Overview

 Main Idea
 Find all maximum-sized cliques
 How to find all maximum-sized cliques?

 Example
 Use of the anti-monotonic property

Maximal Clique Algorithm

A

B

C

D

E

F

G

I

J
K

L M

Size-2 cliques:
{AB}, {AC}, {AE}, …..

Size-3 cliques:
{ABC}, {ACE}, …..

Size-4 cliques: {JKLM}

 Definitions
 Two k-cliques are adjacent if they share (k-1) vertices where k is the number of vertices

in each clique
 A k-clique chain is a sub-graph comprising the union of a sequence of adjacent k cliques

 Process
1) Find all k-cliques
2) Find all maximal k-clique chains by iterative merging adjacent k-cliques

 Reference
 Palla, G., et al., “Uncovering the overlapping community structure of complex networks in

nature and society”, Nature (2005)

Clique Percolation Algorithm

 Definition
 k-core is a sub-graph by pruning all vertices whose degree is less than k

 Process
 Remove repeatedly all vertices

whose degree is less than k
to find a set of k-cores

 Reference
 Wuchy, S. and Almaas, E., “Peeling the yeast protein network”, Proteomics (2005)

k-Core Decomposition Algorithm

A

B

C

D

E

F

G

I

J
K

L M
k = 3

 Main Idea
 Search for local optimization from a seed vertex

→ Local greedy algorithm
 Grow a sub-graph from a seed vertex to optimize a modularity (density) function
 Types of seed vertices

• Random seeds: selected randomly
• Core seeds: selected by degree or clustering coefficient

 Process
1) Select a vertex (seed) as an initial cluster S
2) Add a neighbor of a vertex in S repeatedly if addition increases modularity
3) Return S if modularity does not increase or modularity > threshold
4) Repeat (1), (2) and (3) to find a set of clusters

Seed Growth Algorithms

 Main Idea
 An example of seed-growth algorithms
 Use Graph Entropy as the modularity function
 Find the minimum graph entropy during seed growth

 Definitions
 Inner links, Outer links

• Inner links of v in G’(V’,E’): edges from v to the vertices in V’
→ pi(v): probability of v having inner links

• Outer links of v in G’(V’,E’): edges from v to the vertices not in V’
→ po(v): probability of v having outer links

 Vertex entropy: e(v) = - pi(v) log2pi(v) - po(v) log2po(v)
 Graph entropy : e(G(V,E)) = Σv∈V e(v)

Graph Entropy Algorithm (1)

 Example

Graph Entropy Algorithm (2)

 Process
1) Select a seed vertex, and include all neighbors of the seed vertex into a seed cluster
2) Iteratively remove a neighbor if removal decreases graph entropy
3) Iteratively add a vertex on the outer boundary of a current cluster if addition decreases

graph entropy
4) Output the cluster with the minimal graph entropy
5) Repeat (1), (2), (3), and (4) until no seed vertex remains

 Reference
 Kenley, E.C. and Cho, Y.-R., “Detecting protein complexes and functional modules from

protein interaction networks: a graph entropy approach”, Proteomics (2011)

Graph Entropy Algorithm (3)

1. General Definitions

2. Graph Clustering

 Density-Based Methods

 Partition-Based Methods

 Hierarchical Methods

3. Subgraph Pattern Mining

Overview

 Main Idea
 Random partition and iterative moves of vertices to find the best global modularity
 Types of moves

• Global move: moving a random vertex to a random cluster
• Intensification move: moving in the restricted neighborhood

(vertices on the boundary of partitions)

 Process
1) Randomly partition the graph into k sub-graphs
2) Make an intensification move of a random vertex if this move improves modularity
3) Repeat (2) until finding the best modularity

Restricted Neighborhood Search (1)

 Example
 Use the number of interconnecting edges between clusters as a modularity function

 Reference
 King, A., et al., “Protein complex prediction via cost-based clustering” Bioinformatics (2004)

Restricted Neighborhood Search (2)

A

B

C

D

E

F

G

I

J
K

L M

1. General Definitions

2. Graph Clustering

 Density-Based Methods

 Partition-Based Methods

 Hierarchical Methods

3. Subgraph Pattern Mining

Overview

 Bottom-Up (Agglomerative) Approaches
 Start with each vertex as a cluster
 Iteratively merge the closest clusters
 Require a distance function between two clusters

 Top-Down (Divisive) Approaches
 Start with the whole graph as a cluster
 Recursively divide up the clusters
 Require a cutting algorithm

Bottom-Up vs. Top-Down

 Main Idea
 Agglomerative approach using single-link distance

 Process
1) Select two closest vertices from different clusters based on the shortest path length

between them
2) Merge two clusters that include the selected vertices
3) Repeat (1) and (2) until the shortest path length reaches a threshold

Merging by Shortest Path Length

 Main Idea
 Agglomerative approach using similarity based on common neighbors

→ More common neighbors two vertices share, more similar they are

 Process
1) Find the most similar vertices from different clusters based on a similarity function
2) Merge the two clusters if the merged cluster reaches a density threshold
3) Repeat (1) and (2) until no more clusters can be merged

 Similarity Functions
 Jaccard coefficient:

 Geometric coefficient:

 Dice coefficient:

 Simpson coefficient:

Merging by Common Neighbors

|)()(|
|)()(|),(

yNxN
yNxNyxS

∪
∩

=

|)(||)(|
|)()(|),(
2

yNxN
yNxNyxS

⋅
∩

=

|)(||)(|
|)()(|2),(

yNxN
yNxNyxS

+
∩

=

()|)(||,)(|min
|)()(|),(
yNxN

yNxNyxS ∩
=

 Statistical Similarity Function
 Hyper-geometric P-value:

V is the total number of vertices,
X = |N(x)|,
Y = |N(y)|,
Z = |N(x)∩ N(y)| for vertices x and y

 Process
1) Find the vertices with the smallest P-value
2) Merge two clusters that include the selected vertices
3) Repeat (1) and (2) until no more clusters can be merged

 Reference
 Samanta, M.P. and Liang, S., “Predicting protein functions from redundancies in large-scale

protein interaction networks” PNAS (2003)

Merging by Statistical Significance


























−
−









−
−










=

Y
V

X
V

ZY
XV

ZX
ZV

Z
V

P

 Definitions
 Cut: a set of edges whose removal disconnects the graph
 Minimum cut: a cut with minimum number of edges

 Process
 Recursively find the minimum cut

 Required Parameters
 Minimum density threshold
 Minimum size threshold

Minimum Cut

A

B

C

D

E

F

G

I

J
K

L M

 Definitions
 Betweenness of a vertex: measurement of vertices located between clusters
 Betweenness of an edge: measurement of edges located between clusters

 Process
1) Iteratively eliminate a vertex or an edge with the highest Betweenness value until

the graph is separated
2) Recursively apply (1) into each subgraph
3) Repeat (1) and (2) until all subgraphs reach a density threshold

 Reference
 Dunn, R., et al., “The use of edge-betweenness clustering to investigate biological

function in protein interaction networks” BMC Bioinformatics (2005)

Betweenness Cut

 Main Idea
 Divisive approach using the dissimilarity based on common neighbors

→ Less common neighbors two vertices share, more dissimilar they are

 Process
1) Iteratively eliminate the edge between the most dissimilar vertices based on a similarity

function, until the graph is separated
2) Recursively apply (1) into each subgraph
3) Repeat (1) and (2) until all subgraphs reach a density threshold

 Reference
 Radicchi, F., et al., “Defining and identifying communities in networks” PNAS (2004)

Dividing by Common Neighbors

1. General Definitions

2. Graph Clustering

3. Subgraph Pattern Mining

Overview

 Properties
 Anti-monotonic property
 If a sub-graph G is not frequent, then none of the super-graphs of G are frequent

 Example
 Suppose minimum support is 75%

 If is infrequent,

so do

and

Subgraph Patterns from Graph Dataset

→ Apriori algorithm

id graph

1

2

3

4

 Properties
 Frequent sub-graph pattern mining in a graph

→ Not follow the anti-monotonic property !
 Even if a sub-graph G is not frequent, some of the super-graphs of G might be frequent

 Example
 Suppose minimum support is 10

 How many ?

 How many ?

Subgraph Patterns from a Single Graph

 Main Idea
 Apply the Apriori-like process to graph datasets to detect frequent sub-graph patterns

 Process
1) Initially, find all frequent size-3 sub-graphs
2) Generate candidate size-(k+1) sub-graphs from frequent size-k sub-graphs
3) Count support of each candidate sub-graph to select frequent sub-graphs
4) Repeat (2) and (3) until no frequent sub-graph or no candidate is found

FSG (Frequent Sub-Graph discovery)

 Selective Joining
 (Main idea) Join two size-k sub-graphs if they share a size-(k-1) sub-graph
 Join the same size-k sub-graphs too
 Produce multiple distinct size-(k+1) sub-graphs

Generating Candidate Sub-Graphs

+ →

+ →

 Support Computation
 Detect any isomorphic structure of each candidate sub-graph in the graph dataset

 Isomorphic Graphs
 If two graphs are isomorphic, then they are structurally identical
 Example

Counting Support of Sub-Graphs

ƒ(a) = 1

ƒ(b) = 6

ƒ(c) = 8

ƒ(d) = 3

ƒ(g) = 5

ƒ(h) = 2

ƒ(i) = 4

ƒ(j) = 7

 Strength
 Apriori pruning

 Weakness
 Generates a huge set of candidate sub-graphs
 Requires multiple scans of database
 Inefficient for mining large-sized sub-graph patterns
 Needs efficient finding of isomorphic graphs to count support

 Reference
 Kuramochi, M. and Karypis, G., “Frequent subgraph discovery.” In Proceedings of ICDM (2001)

Summary of FSG Algorithm

 Examples

Structural Isomorphism of Unlabeled Graphs

 Examples

Structural Isomorphism of Labeled Graphs

x

x

y z

z

x

z

x

z

y

zy

x

x

z zy

x

x

z

 Canonical Adjacency Matrix

 Canonical Code
 x1110x100y11z0z

Canonical Adjacency Matrix

x

x

y z

z

0 1 1 1 0

1 0 1 0 0

1 1 0 1 1

1 0 1 0 0

0 0 1 0 0

x x y z z
x
x
y
z
z

x

1 x

1 1 y

1 0 1 z

0 0 1 0 z

 Main Idea
 Use canonical adjacency matrices for selective joining and support counting

 Reference
 Huan, J., Wang, W. and Prins, J., “Efficient mining of frequent subgraph in the presence of

isomorphism.” In Proceedings of ICDM (2003)

FFSM (Fast frequent sub-graph mining)

a

1 b

1 1 b

a

1 b

1 0 b

0 1 0 b

+ →

a

1 b

1 1 b

0 1 0 b

a

1 b

1 1 b

1 1 0 b

a

1 b

1 1 b

1 0 1 b

+ →

a

1 b

1 1 b

1 1 1 b

 Lecture Slides on the Course Website, “https://ads.yonsei.ac.kr/faculty/data_mining”

Questions?

	Graph Data Mining
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45

