Graph Data Mining

Young-Rae Cho, Ph.D.

Associate Professor Division of Software / Division of Digital Healthcare Yonsei University – Mirae Campus

Graph Representation

Graph

An ordered pair G(V,E) with a set of vertices V and a set of edges E

Extended Graph Representation

- **Directed vs. undirected graph**
	- Whether each edge has a direction
- Weighted vs. unweighted graph
	- Whether each edge has a weight
- Labeled vs. unlabeled graph
	- Whether each vertex has a label
- 0-D vs. 1-D vs. 2-D vs. 3-D graph representation
	- Whether each vertex has a specific coordinate

Why Graph Data Mining is Important?

Data are often represented as a graph

- **Biological networks**
- **Chemical compounds**
- **-** Internet
- WWW
- **Electric circuits**
- Workflows
- Social networks

Graph is a general model for data mining !!

Graph Data Mining Topics (1)

Single Graph Mining

- **Filter Frequent sub-graph pattern mining**
	- Finding sub-graphs that frequently occur in a graph
- Graph clustering (Vertex clustering)
	- Partitioning a graph into sub-graphs
- Vertex classification
	- Classifying a vertex in a graph

Graph Data Mining Topics (2)

Graph Dataset Mining

- **Filter Frequent sub-graph pattern mining**
	- Finding sub-graphs that frequently occur among graphs
- **Graph data clustering**
	- Grouping similar graphs
- Graph data classification
	- Classifying a new graph

Applications

Applications of Single Graph Mining

- **Biological network analysis**
- **Social network analysis**
- Web community analysis

Applications of Graph Dataset Mining

- **Biochemical structure analysis**
- **Program control flow analysis**
- **XML structure analysis**

Challenges

- Finding the complete set satisfying the minimum support threshold
- Developing efficient and scalable algorithms
- **Incorporating various kinds of user-specific constraints**

Overview

- 1. **General Definitions**
- **2. Graph Clustering**
- **3. Subgraph Pattern Mining**

Connectivity

Degree

- **Degree of a vertex, deg(v**_i): the number of links from v_i to other vertices
- **Incoming degree and outgoing degree for directed graphs**
- Weighted degree (sum of the weights of the edges directly connected) for weighted graphs

A set of Neighbors

- A set of neighbors of a vertex, $N(v_i)$: a set of vertices directly linked to the vertex v_i
- Also called adjacent neighbors or direct neighbors

Degree Distribution

- **Degree distribution of a graph G: Probability that a vertex in G has exactly k links,** $P(k)$
- The number of vertices whose degree is k over the total number of vertices in G

Length & Size

Walk

A sequence of vertices such that each is linked to its succeeding one

Path

A walk such that each vertex in the walk is distinct

Path Length

• The number of edges in path p

\square **Shortest Path between** v_i **and** v_i

A path with the smallest length out of all paths from v_i to v_j

Characteristic Path Length

 Characteristic path length of a graph G: average length of the shortest paths between each pair of vertices in G

Diameter

 Diameter of a graph G: largest length of the shortest paths between each pair of vertices in G

Density

Density

Density of a graph G: the number of actual edges in G over the number of all possible edges

•
$$
D(G) = \frac{2|E|}{|V|(|V|-1)}
$$
 where G(V,E)

The range of density?

Clique

- A fully connected graph (also called, complete graph)
- $D(G) = 1$

Quasi-Clique

- **Close to clique**
- A densely connected sub-graph
- $D(G) > \theta$ where θ is a user-specified threshold

Modularity

Clustering Coefficient

Clustering coefficient of a vertex v_i **: The density of a sub-graph G'(V',E') where V' is** the set of neighbors of v_i

•
$$
C(v_i) = \frac{\left| \bigcup_{v_j, v_k \in N(v_i)} \left\langle \left\langle v_j, v_k \right\rangle \right\|}{\left| N(v_i) \right| \left(\left| N(v_i) \right| - 1 \right)}
$$

- The range of a clustering coefficient?
- **Measuring the effectiveness of** v_i **on denseness**

Average Clustering Coefficient

- Average clustering coefficient of a graph G: the average of the clustering coefficients of all vertices in G
- The range of an average clustering coefficient?
- Measuring the modularity of G

Centrality

Closeness

Closeness of a vertex v_i **,** $C_c(v_i)$ **: the inverse of the sum of shortest path length between** v_i and all vertices in the graph

• $C_C(v_i) = \frac{1}{\sum_{i=1}^n (v_i, v_i)}$ where $|p_s(v_i,v_j)|$ is the shortest path length between v_i and v_j $| p_{s} (v_{i}, v_{i}) |$ $(v_i) = \frac{1}{\sum_{i=1}^{i} (v_i - v_i)^2}$ $\sum_{v_i \in$ = $v_j \in V^{\perp}$ $P_s \vee i^j v_j$ C V_i $\int_{\mathcal{V}}\in V}\big|\,p_{s}(\nu_{i},\nu)$ C_c (*v*

Detects the vertices located in the center of a graph

Betweenness

Betweenness of a vertex v_i , $C_B(v_i)$: the sum of the ratios of the shortest paths which pass through v_i

 $C_B(v_i) = \sum \frac{\sigma_{st}(v_i)}{\sigma}$ where σ_{st} is the number of shortest paths between s and t, and $\neq v_i \neq t \in$ = $s \neq v_i \neq t \in V$ *U st* st \vee *i* $B \ V i$ *i* $C_g(v_i) = \sum \frac{\sigma_{st}(v_i)}{v_i}$ σ $(v_i) = \sum \frac{\sigma_{st}(v_i)}{\sigma_{st}}$

 σ_{st} (v_i) is the number of shortest paths between s and t, which pass through v_i

EXECT Detects the vertices located between two clusters

Overview

- 1. **General Definitions**
- **2. Graph Clustering**
- **3. Subgraph Pattern Mining**

Graph Clustering

Problem Definition

- Finding a set of sub-graphs $G'(V', E')$ from a graph $G(V, E)$
	- Clusters: the sub-graphs
	- Clustering criteria: dense intra-connections and sparse interconnections between

the sub-graphs \rightarrow modularity

Components (vertices or edges) are overlapping vs. non-overlapping?

Methods

- **-** Density-based methods
- Partition-based methods
- **Hierarchical methods**

Overview

- 1. **General Definitions**
- **2. Graph Clustering**
	- **Density-Based Methods**
	- **Partition-Based Methods**
	- **-** Hierarchical Methods
- **3. Subgraph Pattern Mining**

Maximal Clique Algorithm

Main Idea

- Find all maximum-sized cliques
- How to find all maximum-sized cliques?

Example

Use of the anti-monotonic property

Size-2 cliques: {*AB*}, {*AC*}, {*AE*}, …..

Size-3 cliques: {*ABC*}, {*ACE*}, …..

Size-4 cliques: {*JKLM*}

Clique Percolation Algorithm

Definitions

- Two k-cliques are adjacent if they share (k-1) vertices where k is the number of vertices in each clique
- A k-clique chain is a sub-graph comprising the union of a sequence of adjacent k cliques

Process

- 1) Find all k-cliques
- 2) Find all maximal k-clique chains by iterative merging adjacent k-cliques

Reference

 Palla, G., et al., "Uncovering the overlapping community structure of complex networks in nature and society", Nature (2005)

k-Core Decomposition Algorithm

Definition

k-core is a sub-graph by pruning all vertices whose degree is less than k

Process

Reference

Wuchy, S. and Almaas, E., "Peeling the yeast protein network", Proteomics (2005)

Seed Growth Algorithms

Main Idea

- Search for local optimization from a seed vertex
	- \rightarrow Local greedy algorithm
- Grow a sub-graph from a seed vertex to optimize a modularity (density) function
- Types of seed vertices
	- Random seeds: selected randomly
	- Core seeds: selected by degree or clustering coefficient

Process

- 1) Select a vertex (seed) as an initial cluster S
- 2) Add a neighbor of a vertex in S repeatedly if addition increases modularity
- 3) Return S if modularity does not increase or modularity > threshold
- 4) Repeat (1), (2) and (3) to find a set of clusters

Graph Entropy Algorithm (1)

Main Idea

- An example of seed-growth algorithms
- Use Graph Entropy as the modularity function
- Find the minimum graph entropy during seed growth

Definitions

- **Inner links, Outer links**
	- Inner links of v in $G'(V', E')$: edges from v to the vertices in V'
		- \rightarrow $p_i(v)$: probability of v having inner links
	- Outer links of v in $G'(V', E')$: edges from v to the vertices not in V' \rightarrow p_o(v): probability of v having outer links
- Vertex entropy: $e(v) = -p_i(v) \log_2 p_i(v) p_o(v) \log_2 p_o(v)$
- Graph entropy : $e(G(V,E)) = \sum_{v \in V} e(v)$

Graph Entropy Algorithm (2)

Example

Process

- 1) Select a seed vertex, and include all neighbors of the seed vertex into a seed cluster
- 2) Iteratively remove a neighbor if removal decreases graph entropy
- 3) Iteratively add a vertex on the outer boundary of a current cluster if addition decreases graph entropy
- 4) Output the cluster with the minimal graph entropy
- 5) Repeat (1), (2), (3), and (4) until no seed vertex remains

Reference

 Kenley, E.C. and Cho, Y.-R., "Detecting protein complexes and functional modules from protein interaction networks: a graph entropy approach", Proteomics (2011)

Overview

- 1. **General Definitions**
- **2. Graph Clustering**
	- **Density-Based Methods**
	- **Partition-Based Methods**
	- **-** Hierarchical Methods
- **3. Subgraph Pattern Mining**

Restricted Neighborhood Search (1)

Main Idea

- Random partition and iterative moves of vertices to find the best global modularity
- **Types of moves**
	- Global move: moving a random vertex to a random cluster
	- Intensification move: moving in the restricted neighborhood (vertices on the boundary of partitions)

Process

- 1) Randomly partition the graph into k sub-graphs
- 2) Make an intensification move of a random vertex if this move improves modularity
- 3) Repeat (2) until finding the best modularity

Restricted Neighborhood Search (2)

Example

Use the number of interconnecting edges between clusters as a modularity function

Reference

King, A., et al., "Protein complex prediction via cost-based clustering" Bioinformatics (2004)

Overview

- 1. **General Definitions**
- **2. Graph Clustering**
	- **Density-Based Methods**
	- **Partition-Based Methods**
	- **Hierarchical Methods**
- **3. Subgraph Pattern Mining**

Bottom-Up vs. Top-Down

Bottom-Up (Agglomerative) Approaches

- **Start with each vertex as a cluster**
- **Iteratively merge the closest clusters**
- Require a distance function between two clusters

Top-Down (Divisive) Approaches

- **Start with the whole graph as a cluster**
- Recursively divide up the clusters
- Require a cutting algorithm

Merging by Shortest Path Length

Main Idea

Agglomerative approach using single-link distance

Process

- 1) Select two closest vertices from different clusters based on the shortest path length between them
- 2) Merge two clusters that include the selected vertices
- 3) Repeat (1) and (2) until the shortest path length reaches a threshold

Merging by Common Neighbors

Main Idea

- Agglomerative approach using similarity based on common neighbors
	- \rightarrow More common neighbors two vertices share, more similar they are

Process

- 1) Find the most similar vertices from different clusters based on a similarity function
- 2) Merge the two clusters if the merged cluster reaches a density threshold
- 3) Repeat (1) and (2) until no more clusters can be merged

Similarity Functions

 Jaccard coefficient: $S(x, y) = \frac{|N(x) \cap N(y)|}{|N(x) \cup N(y)|}$ ∪ $=\frac{|N(x)\cap}{\sum_{x\in\mathbb{R}}|X(x)|}$

$$
S(x, y) = \frac{|N(x) \cap N(y)|^2}{|N(x)| \cdot |N(y)|}
$$

- Geometric coefficient:
- Dice coefficient: $S(x, y) = \frac{2 |N(x) \cap N(y)|}{|N(x)| + |N(y)|}$ + $=\frac{2|N(x)\cap}{\sum_{x\in\mathcal{X}}$
- **Simpson coefficient:**

 $S(x, y) = \frac{|N(x) \cap N(y)|}{\min(|N(x)|, |N(y)|)}$

Merging by Statistical Significance

Statistical Similarity Function

Hyper-geometric P-value:

V is the total number of vertices, $X = |N(x)|$, $Y = |N(y)|$, $Z = |N(x) \cap N(y)|$ for vertices x and y

Process

- 1) Find the vertices with the smallest P-value
- 2) Merge two clusters that include the selected vertices
- 3) Repeat (1) and (2) until no more clusters can be merged

Reference

 Samanta, M.P. and Liang, S., "Predicting protein functions from redundancies in large-scale protein interaction networks" PNAS (2003)

Minimum Cut

Definitions

- Cut: a set of edges whose removal disconnects the graph
- Minimum cut: a cut with minimum number of edges

Kallengia Minimum size threshold

Betweenness Cut

Definitions

- Betweenness of a vertex: measurement of vertices located between clusters
- Betweenness of an edge: measurement of edges located between clusters

Process

- 1) Iteratively eliminate a vertex or an edge with the highest Betweenness value until the graph is separated
- 2) Recursively apply (1) into each subgraph
- 3) Repeat (1) and (2) until all subgraphs reach a density threshold

Reference

 Dunn, R., et al., "The use of edge-betweenness clustering to investigate biological function in protein interaction networks" BMC Bioinformatics (2005)

Dividing by Common Neighbors

Main Idea

- Divisive approach using the dissimilarity based on common neighbors
	- \rightarrow Less common neighbors two vertices share, more dissimilar they are

Process

- 1) Iteratively eliminate the edge between the most dissimilar vertices based on a similarity function, until the graph is separated
- 2) Recursively apply (1) into each subgraph
- 3) Repeat (1) and (2) until all subgraphs reach a density threshold

Reference

Radicchi, F., et al., "Defining and identifying communities in networks" PNAS (2004)

Overview

- 1. **General Definitions**
- **2. Graph Clustering**
- **3. Subgraph Pattern Mining**

Subgraph Patterns from Graph Dataset

Properties

- Anti-monotonic property \rightarrow Apriori algorithm
- If a sub-graph G is not frequent, then none of the super-graphs of G are frequent

Example

Subgraph Patterns from a Single Graph

Properties

- **Filter** Frequent sub-graph pattern mining in a graph
	- \rightarrow Not follow the anti-monotonic property !
- Even if a sub-graph G is not frequent, some of the super-graphs of G might be frequent

Example

- **Suppose minimum support is 10**
- **How many** $Q \rightarrow$ **? How many**

FSG (Frequent Sub-Graph discovery)

Main Idea

Apply the Apriori-like process to graph datasets to detect frequent sub-graph patterns

Process

- 1) Initially, find all frequent size-3 sub-graphs
- 2) Generate candidate size-(k+1) sub-graphs from frequent size-k sub-graphs
- 3) Count support of each candidate sub-graph to select frequent sub-graphs
- 4) Repeat (2) and (3) until no frequent sub-graph or no candidate is found

Generating Candidate Sub-Graphs

Selective Joining

- (Main idea) Join two size-k sub-graphs if they share a size-(k-1) sub-graph
- Join the same size-k sub-graphs too
- Produce multiple distinct size- $(k+1)$ sub-graphs

Counting Support of Sub-Graphs

Support Computation

Detect any isomorphic structure of each candidate sub-graph in the graph dataset

Isomorphic Graphs

- **If two graphs are isomorphic, then they are structurally identical**
- **Example**

Summary of FSG Algorithm

Strength

Apriori pruning

Weakness

- Generates a huge set of candidate sub-graphs
- **Requires multiple scans of database**
- **Inefficient for mining large-sized sub-graph patterns**
- Needs efficient finding of isomorphic graphs to count support

Reference

Kuramochi, M. and Karypis, G., "Frequent subgraph discovery." In Proceedings of ICDM (2001)

Structural Isomorphism of Unlabeled Graphs

Examples

Structural Isomorphism of Labeled Graphs

Examples

Canonical Adjacency Matrix

Canonical Adjacency Matrix

Canonical Code

x1110x100y11z0z

FFSM (Fast frequent sub-graph mining)

Main Idea

Use canonical adjacency matrices for selective joining and support counting

Reference

 Huan, J., Wang, W. and Prins, J., "Efficient mining of frequent subgraph in the presence of isomorphism." In Proceedings of ICDM (2003)

Questions?

Lecture Slides on the Course Website, "https://ads.yonsei.ac.kr/faculty/data_mining"

