
Graph Data Mining

Young-Rae Cho, Ph.D.
Associate Professor
Division of Software / Division of Digital Healthcare
Yonsei University – Mirae Campus

 Graph
 An ordered pair G(V,E) with a set of vertices V and a set of edges E

 Extended Graph Representation
 Directed vs. undirected graph

• Whether each edge has a direction

 Weighted vs. unweighted graph
• Whether each edge has a weight

 Labeled vs. unlabeled graph
• Whether each vertex has a label

 0-D vs. 1-D vs. 2-D vs. 3-D graph representation
• Whether each vertex has a specific coordinate

Graph Representation

 Data are often represented as a graph
 Biological networks
 Chemical compounds
 Internet
 WWW
 Electric circuits
 Workflows
 Social networks

 Graph is a general model for data mining !!

Why Graph Data Mining is Important?

 Single Graph Mining
 Frequent sub-graph pattern mining

• Finding sub-graphs that frequently occur in a graph

 Graph clustering (Vertex clustering)
• Partitioning a graph into sub-graphs

 Vertex classification
• Classifying a vertex in a graph

Graph Data Mining Topics (1)

 Graph Dataset Mining
 Frequent sub-graph pattern mining

• Finding sub-graphs that frequently occur among graphs

 Graph data clustering
• Grouping similar graphs

 Graph data classification
• Classifying a new graph

Graph Data Mining Topics (2)

id graph

1

2

3

4

 Applications of Single Graph Mining
 Biological network analysis
 Social network analysis
 Web community analysis

 Applications of Graph Dataset Mining
 Biochemical structure analysis
 Program control flow analysis
 XML structure analysis

 Challenges
 Finding the complete set satisfying the minimum support threshold
 Developing efficient and scalable algorithms
 Incorporating various kinds of user-specific constraints

Applications

1. General Definitions

2. Graph Clustering

3. Subgraph Pattern Mining

Overview

 Degree
 Degree of a vertex, deg(vi): the number of links from vi to other vertices
 Incoming degree and outgoing degree for directed graphs
 Weighted degree (sum of the weights of the edges directly connected) for weighted graphs

 A set of Neighbors
 A set of neighbors of a vertex, N(vi): a set of vertices directly linked to the vertex vi

 Also called adjacent neighbors or direct neighbors

 Degree Distribution
 Degree distribution of a graph G: Probability that a vertex in G has exactly k links, P(k)
 The number of vertices whose degree is k over the total number of vertices in G

Connectivity

 Walk
 A sequence of vertices such that each is linked to its succeeding one

 Path
 A walk such that each vertex in the walk is distinct

 Path Length
 The number of edges in path p

 Shortest Path between vi and vj

 A path with the smallest length out of all paths from vi to vj

 Characteristic Path Length
 Characteristic path length of a graph G: average length of the shortest paths between

each pair of vertices in G
 Diameter

 Diameter of a graph G: largest length of the shortest paths between each pair of vertices
in G

Length & Size

 Density
 Density of a graph G: the number of actual edges in G over the number of all possible edges

 where G(V,E)

 The range of density?

 Clique
 A fully connected graph (also called, complete graph)
 D(G) = 1

 Quasi-Clique
 Close to clique
 A densely connected sub-graph
 D(G) > θ where θ is a user-specified threshold

Density

)1|(|||
||2)(
−

=
VV
EGD

 Clustering Coefficient
 Clustering coefficient of a vertex vi: The density of a sub-graph G’(V’,E’) where V’ is

the set of neighbors of vi

 The range of a clustering coefficient?

 Measuring the effectiveness of vi on denseness

 Average Clustering Coefficient
 Average clustering coefficient of a graph G: the average of the clustering coefficients of

all vertices in G
 The range of an average clustering coefficient?
 Measuring the modularity of G

Modularity

{ }
()1|)(||)(|

,
)(

)(,

−
=

∈

ii

vNvv kj

i vNvN

vv
vC ikj

 Closeness
 Closeness of a vertex vi, Cc(vi): the inverse of the sum of shortest path length between

vi and all vertices in the graph

 where |ps(vi,vj)| is the shortest path length between vi and vj

 Detects the vertices located in the center of a graph

 Betweenness
 Betweenness of a vertex vi, CB(vi): the sum of the ratios of the shortest paths which

pass through vi

 where σst is the number of shortest paths between s and t, and

σst(vi) is the number of shortest paths between s and t, which pass through vi

 Detects the vertices located between two clusters

Centrality

|),(|
1)(

∑ ∈

=
Vv jis

iC

j
vvp

vC

∑
∈≠≠

=
Vtvs st

ist
iB

i

vvC
σ

σ)()(

1. General Definitions

2. Graph Clustering

3. Subgraph Pattern Mining

Overview

 Problem Definition
 Finding a set of sub-graphs G’(V’,E’) from a graph G(V,E)

• Clusters: the sub-graphs
• Clustering criteria: dense intra-connections and sparse interconnections between

the sub-graphs → modularity
 Components (vertices or edges) are overlapping vs. non-overlapping?

 Methods
 Density-based methods
 Partition-based methods
 Hierarchical methods

Graph Clustering

1. General Definitions

2. Graph Clustering

 Density-Based Methods

 Partition-Based Methods

 Hierarchical Methods

3. Subgraph Pattern Mining

Overview

 Main Idea
 Find all maximum-sized cliques
 How to find all maximum-sized cliques?

 Example
 Use of the anti-monotonic property

Maximal Clique Algorithm

A

B

C

D

E

F

G

I

J
K

L M

Size-2 cliques:
{AB}, {AC}, {AE}, …..

Size-3 cliques:
{ABC}, {ACE}, …..

Size-4 cliques: {JKLM}

 Definitions
 Two k-cliques are adjacent if they share (k-1) vertices where k is the number of vertices

in each clique
 A k-clique chain is a sub-graph comprising the union of a sequence of adjacent k cliques

 Process
1) Find all k-cliques
2) Find all maximal k-clique chains by iterative merging adjacent k-cliques

 Reference
 Palla, G., et al., “Uncovering the overlapping community structure of complex networks in

nature and society”, Nature (2005)

Clique Percolation Algorithm

 Definition
 k-core is a sub-graph by pruning all vertices whose degree is less than k

 Process
 Remove repeatedly all vertices

whose degree is less than k
to find a set of k-cores

 Reference
 Wuchy, S. and Almaas, E., “Peeling the yeast protein network”, Proteomics (2005)

k-Core Decomposition Algorithm

A

B

C

D

E

F

G

I

J
K

L M
k = 3

 Main Idea
 Search for local optimization from a seed vertex

→ Local greedy algorithm
 Grow a sub-graph from a seed vertex to optimize a modularity (density) function
 Types of seed vertices

• Random seeds: selected randomly
• Core seeds: selected by degree or clustering coefficient

 Process
1) Select a vertex (seed) as an initial cluster S
2) Add a neighbor of a vertex in S repeatedly if addition increases modularity
3) Return S if modularity does not increase or modularity > threshold
4) Repeat (1), (2) and (3) to find a set of clusters

Seed Growth Algorithms

 Main Idea
 An example of seed-growth algorithms
 Use Graph Entropy as the modularity function
 Find the minimum graph entropy during seed growth

 Definitions
 Inner links, Outer links

• Inner links of v in G’(V’,E’): edges from v to the vertices in V’
→ pi(v): probability of v having inner links

• Outer links of v in G’(V’,E’): edges from v to the vertices not in V’
→ po(v): probability of v having outer links

 Vertex entropy: e(v) = - pi(v) log2pi(v) - po(v) log2po(v)
 Graph entropy : e(G(V,E)) = Σv∈V e(v)

Graph Entropy Algorithm (1)

 Example

Graph Entropy Algorithm (2)

 Process
1) Select a seed vertex, and include all neighbors of the seed vertex into a seed cluster
2) Iteratively remove a neighbor if removal decreases graph entropy
3) Iteratively add a vertex on the outer boundary of a current cluster if addition decreases

graph entropy
4) Output the cluster with the minimal graph entropy
5) Repeat (1), (2), (3), and (4) until no seed vertex remains

 Reference
 Kenley, E.C. and Cho, Y.-R., “Detecting protein complexes and functional modules from

protein interaction networks: a graph entropy approach”, Proteomics (2011)

Graph Entropy Algorithm (3)

1. General Definitions

2. Graph Clustering

 Density-Based Methods

 Partition-Based Methods

 Hierarchical Methods

3. Subgraph Pattern Mining

Overview

 Main Idea
 Random partition and iterative moves of vertices to find the best global modularity
 Types of moves

• Global move: moving a random vertex to a random cluster
• Intensification move: moving in the restricted neighborhood

(vertices on the boundary of partitions)

 Process
1) Randomly partition the graph into k sub-graphs
2) Make an intensification move of a random vertex if this move improves modularity
3) Repeat (2) until finding the best modularity

Restricted Neighborhood Search (1)

 Example
 Use the number of interconnecting edges between clusters as a modularity function

 Reference
 King, A., et al., “Protein complex prediction via cost-based clustering” Bioinformatics (2004)

Restricted Neighborhood Search (2)

A

B

C

D

E

F

G

I

J
K

L M

1. General Definitions

2. Graph Clustering

 Density-Based Methods

 Partition-Based Methods

 Hierarchical Methods

3. Subgraph Pattern Mining

Overview

 Bottom-Up (Agglomerative) Approaches
 Start with each vertex as a cluster
 Iteratively merge the closest clusters
 Require a distance function between two clusters

 Top-Down (Divisive) Approaches
 Start with the whole graph as a cluster
 Recursively divide up the clusters
 Require a cutting algorithm

Bottom-Up vs. Top-Down

 Main Idea
 Agglomerative approach using single-link distance

 Process
1) Select two closest vertices from different clusters based on the shortest path length

between them
2) Merge two clusters that include the selected vertices
3) Repeat (1) and (2) until the shortest path length reaches a threshold

Merging by Shortest Path Length

 Main Idea
 Agglomerative approach using similarity based on common neighbors

→ More common neighbors two vertices share, more similar they are

 Process
1) Find the most similar vertices from different clusters based on a similarity function
2) Merge the two clusters if the merged cluster reaches a density threshold
3) Repeat (1) and (2) until no more clusters can be merged

 Similarity Functions
 Jaccard coefficient:

 Geometric coefficient:

 Dice coefficient:

 Simpson coefficient:

Merging by Common Neighbors

|)()(|
|)()(|),(

yNxN
yNxNyxS

∪
∩

=

|)(||)(|
|)()(|),(
2

yNxN
yNxNyxS

⋅
∩

=

|)(||)(|
|)()(|2),(

yNxN
yNxNyxS

+
∩

=

()|)(||,)(|min
|)()(|),(
yNxN

yNxNyxS ∩
=

 Statistical Similarity Function
 Hyper-geometric P-value:

V is the total number of vertices,
X = |N(x)|,
Y = |N(y)|,
Z = |N(x)∩ N(y)| for vertices x and y

 Process
1) Find the vertices with the smallest P-value
2) Merge two clusters that include the selected vertices
3) Repeat (1) and (2) until no more clusters can be merged

 Reference
 Samanta, M.P. and Liang, S., “Predicting protein functions from redundancies in large-scale

protein interaction networks” PNAS (2003)

Merging by Statistical Significance

−
−

−
−

=

Y
V

X
V

ZY
XV

ZX
ZV

Z
V

P

 Definitions
 Cut: a set of edges whose removal disconnects the graph
 Minimum cut: a cut with minimum number of edges

 Process
 Recursively find the minimum cut

 Required Parameters
 Minimum density threshold
 Minimum size threshold

Minimum Cut

A

B

C

D

E

F

G

I

J
K

L M

 Definitions
 Betweenness of a vertex: measurement of vertices located between clusters
 Betweenness of an edge: measurement of edges located between clusters

 Process
1) Iteratively eliminate a vertex or an edge with the highest Betweenness value until

the graph is separated
2) Recursively apply (1) into each subgraph
3) Repeat (1) and (2) until all subgraphs reach a density threshold

 Reference
 Dunn, R., et al., “The use of edge-betweenness clustering to investigate biological

function in protein interaction networks” BMC Bioinformatics (2005)

Betweenness Cut

 Main Idea
 Divisive approach using the dissimilarity based on common neighbors

→ Less common neighbors two vertices share, more dissimilar they are

 Process
1) Iteratively eliminate the edge between the most dissimilar vertices based on a similarity

function, until the graph is separated
2) Recursively apply (1) into each subgraph
3) Repeat (1) and (2) until all subgraphs reach a density threshold

 Reference
 Radicchi, F., et al., “Defining and identifying communities in networks” PNAS (2004)

Dividing by Common Neighbors

1. General Definitions

2. Graph Clustering

3. Subgraph Pattern Mining

Overview

 Properties
 Anti-monotonic property
 If a sub-graph G is not frequent, then none of the super-graphs of G are frequent

 Example
 Suppose minimum support is 75%

 If is infrequent,

so do

and

Subgraph Patterns from Graph Dataset

→ Apriori algorithm

id graph

1

2

3

4

 Properties
 Frequent sub-graph pattern mining in a graph

→ Not follow the anti-monotonic property !
 Even if a sub-graph G is not frequent, some of the super-graphs of G might be frequent

 Example
 Suppose minimum support is 10

 How many ?

 How many ?

Subgraph Patterns from a Single Graph

 Main Idea
 Apply the Apriori-like process to graph datasets to detect frequent sub-graph patterns

 Process
1) Initially, find all frequent size-3 sub-graphs
2) Generate candidate size-(k+1) sub-graphs from frequent size-k sub-graphs
3) Count support of each candidate sub-graph to select frequent sub-graphs
4) Repeat (2) and (3) until no frequent sub-graph or no candidate is found

FSG (Frequent Sub-Graph discovery)

 Selective Joining
 (Main idea) Join two size-k sub-graphs if they share a size-(k-1) sub-graph
 Join the same size-k sub-graphs too
 Produce multiple distinct size-(k+1) sub-graphs

Generating Candidate Sub-Graphs

+ →

+ →

 Support Computation
 Detect any isomorphic structure of each candidate sub-graph in the graph dataset

 Isomorphic Graphs
 If two graphs are isomorphic, then they are structurally identical
 Example

Counting Support of Sub-Graphs

ƒ(a) = 1

ƒ(b) = 6

ƒ(c) = 8

ƒ(d) = 3

ƒ(g) = 5

ƒ(h) = 2

ƒ(i) = 4

ƒ(j) = 7

 Strength
 Apriori pruning

 Weakness
 Generates a huge set of candidate sub-graphs
 Requires multiple scans of database
 Inefficient for mining large-sized sub-graph patterns
 Needs efficient finding of isomorphic graphs to count support

 Reference
 Kuramochi, M. and Karypis, G., “Frequent subgraph discovery.” In Proceedings of ICDM (2001)

Summary of FSG Algorithm

 Examples

Structural Isomorphism of Unlabeled Graphs

 Examples

Structural Isomorphism of Labeled Graphs

x

x

y z

z

x

z

x

z

y

zy

x

x

z zy

x

x

z

 Canonical Adjacency Matrix

 Canonical Code
 x1110x100y11z0z

Canonical Adjacency Matrix

x

x

y z

z

0 1 1 1 0

1 0 1 0 0

1 1 0 1 1

1 0 1 0 0

0 0 1 0 0

x x y z z
x
x
y
z
z

x

1 x

1 1 y

1 0 1 z

0 0 1 0 z

 Main Idea
 Use canonical adjacency matrices for selective joining and support counting

 Reference
 Huan, J., Wang, W. and Prins, J., “Efficient mining of frequent subgraph in the presence of

isomorphism.” In Proceedings of ICDM (2003)

FFSM (Fast frequent sub-graph mining)

a

1 b

1 1 b

a

1 b

1 0 b

0 1 0 b

+ →

a

1 b

1 1 b

0 1 0 b

a

1 b

1 1 b

1 1 0 b

a

1 b

1 1 b

1 0 1 b

+ →

a

1 b

1 1 b

1 1 1 b

 Lecture Slides on the Course Website, “https://ads.yonsei.ac.kr/faculty/data_mining”

Questions?

	Graph Data Mining
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45

