Data Preprocessing

Young-Rae Cho, Ph.D.

Associate Professor Division of Software / Division of Digital Healthcare Yonsei University – Mirae Campus

Why Need Data Preprocessing?

□ Incomplete Data

Missing values, or Lack of attributes of interest

Noisy Data

Errors, or Outliers

Redundant Data

Duplicate data, or Duplicate attributes
 e.g., Age = "47", Birthday = "01/07/1968"

Inconsistent Data

Containing discrepancies in format or name
 e.g., Rating by "1, 2, 3", Rating by "A, B, C"

Huge Volume of Data

Importance of Data Preprocessing

Increase Data Quality

Mining quality depends on data quality as well as mining techniques.
 (Lower Quality Data, Lower Quality Mining Results !!)

Majority of Data Mining

 Data pre-processing comprises the majority of the works for data warehousing and data mining.

Major Tasks of Data Preprocessing

Data Cleaning

 Fill in missing values, smooth noisy data, remove outliers, remove redundancy, and resolve inconsistency

Data Integration

Integration of multiple databases or files

Data Transformation

Normalization and aggregation

Data Reduction

- Reducing representation in volume with similar analytical results
- Discretization of continuous data

Overview

- 1. General Data Characteristics
- 2. Descriptive Data Summarization
- 3. Data Cleaning
- 4. Data Integration
- 5. Data Transformation
- 6. Data Reduction

Data Type

□ Record

- Relational records
- Data matrix, e.g., numerical matrix, crosstabs
- Document data, e.g., text documents
- Transaction data

Ordered Data

- Sequential data, e.g., transaction sequences, biological sequences
- Temporal data, e.g., time-series data
- Spatial data, e.g., maps

□ Graph

- WWW, internet
- Social or information networks
- Biological networks

Attribute Type

Nominal

• e.g., ID number, profession, zip code

Ordinal

• e.g., ranking, grades, sizes

□ Binary

e.g., medical test (positive or negative)

□ Interval

• e.g., calendar dates, temperature, height

Ratio

• e.g., population, sales

Discrete Attribute vs. Continuous Attribute

Discrete Attribute

- Finite set of values
- Sometimes, represented as integer values
- Binary attributes are a special case of discrete attributes

Continuous Attribute

- Real numbers as values
- Typically, represented as floating-point variables
- In practice, shown as a finite number of digits

Data Characteristics

Dimensionality

Curse of dimensionality

□ Sparsity

Lack of information

□ Resolution

Patterns depending on the scale

□ Similarity

Similarity measures for complex types of data

Overview

- 1. General Data Characteristics
- 2. Descriptive Data Summarization
- 3. Data Cleaning
- 4. Data Integration
- 5. Data Transformation
- 6. Data Reduction

Descriptive Data Mining

Motivation

- To better understand the properties of data distributions,
 - e.g., central tendency, spread and variation

□ Measurements

median, max, min, quantiles, outliers, etc.

Analysis Process

- Folding the measures into numeric dimensions
- Graphic analysis on the transformed dimension space

Central Tendency Measures

Mean

- Weighted arithmetic mean:
- Trimmed mean: chopping extreme values

Median

- Middle value if odd number of values
- Average of two middle values otherwise
- Estimation by interpolation for grouped data:

□ Mode

- The value that occurs the most frequently in the data
- Unimodal, bimodal, trimodal distribution

$$median = L_1 + \left(\frac{N/2 - \left(\sum freq_{low}\right)}{freq_{med}}\right) width$$

Data Dispersion Measures

Quartiles and Outliers

- Quartiles: Q1 (25th percentile), Q3 (75th percentile)
- Inter-quartile range: IQR = Q3 Q1
- Outliers: data with extreme low and high values

usually, values lower/higher than Q1–1.5 \times IQR / Q3+1.5 \times IQR

U Variance and Standard Deviation

• σ^2 , σ in population:

$$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} (x_{i} - \mu)^{2} = \frac{1}{N} \sum_{i=1}^{n} x_{i}^{2} - \mu^{2}$$

• s^2 , s by sampling:

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} (\sum_{i=1}^{n} x_{i})^{2} \right]$$

Degree of Freedom: # independent pieces of information

(= # independent measurement - # parameters)

Graphic Analysis

□ Boxplot

Display of five-number summary

□ Histogram

Display of tabulated frequencies

Quantile-Quantile (Q-Q) Plot

Description of the relationship between two univariate distributions

Scatter Plot

- Description of the relationship between two attributes of a bivariate distribution

Boxplot Analysis

□ Five-number summary of a Distribution

Minimum / Q1 / Median / Q3 / Maximum

Boxplot

- Represented as a box
- The bottom of the box is Q1
- The top of the box is Q3
- The median is marked by a line
- Whiskers: two lines outside of the box extend to minimum and maximum

□ Histogram

- Univariate graphic method
- Represented as a set of bars reflecting the frequencies of the discrete values
- Grouping data values into classes if they are continuous

Boxplot vs. Histogram

• Often, histogram gives more information than boxplot

Quantile Plot Analysis

Quantile Plot

- Plots quantile information of the data (sorted in an ascending order)
- Displays all the data

Q-Q (Quantile-Quantile) Plot

- Plots the quantiles of one univariate distribution against the quantiles of the other
- Describes the relationship

between two distributions

Normal Q-Q Plot

Scatter Plot Analysis

Scatter Plot

- Displays the points of bivariate data
- Describes the relationship between two attributes (variables)

Overview

- 1. General Data Characteristics
- 2. Descriptive Data Summarization
- 3. Data Cleaning
- 4. Data Integration
- 5. Data Transformation
- 6. Data Reduction

Missing Data

Data is not always available

• e.g., many tuples have no record value for several attributes

Missing data may be due to

- equipment malfunction
- inconsistent with other recorded data and thus deleted
- data not entered due to misunderstanding
- certain data may not be considered important at the time of entry
- not register history or changes of the data

Missing data may need to be inferred

How to Handle Missing Data

□ Ignore the missing values

Not effective

□ Fill in the missing values manually

• Tedious, infeasible?

□ Fill in the missing values automatically with

- "unknown": not effective
- The attribute mean
- The attribute mean of all samples belonging to the same class
- The most probable value by inference or classification techniques

Noisy Data

□ Noise

• Random error or variance in a measured variable

□ Incorrect data may be due to

- faulty data collection instruments
- data transmission problem
- technology limitation
- inconsistency in data conversion

Other Data Problems

- Duplicate records
- Incomplete data
- Inconsistent data

How to Handle Noisy Data

Binning

- Sort data and partition into bins
- Smooth by bin means, smooth by bin median, smooth by bin boundaries

□ Regression

• Smooth by fitting the data into regression functions

Clustering

Detect and remove outliers

Inspection Semi-automatically

Detect suspicious values and check by human

Partitioning for Binning

□ Equal-Width (Distance) Partitioning

- Divides the range into N intervals of equal distance (uniform grid)
- If A and B are the lowest and highest values of the attribute, then the width of intervals will be (B-A)/N.
- Straightforward
- Problem:
 - 1. Outliers may dominate the partitions.
 - 2. Skewed data is not handled well.

□ Equal-Depth (Frequency) Partitioning

- Divides the range into N intervals of equal frequency, i.e., each containing approximately same number of samples.
- Problem: Not possible for categorical attributes

Data Smoothing for Binning

Example

- Sorted data of price (in dollars): 4,8,9,15,21,21,24,25,26,28,29,34
- Partition into three equal-frequency bins

Regression

□ Linear Regression

Modeled as a linear function of one variable,

Y = w X + b

• Often, uses a least-square method.

Multiple Regression

- Modeled as a linear function of a multi-dimensional feature vector, Y = b₀ + b₁ X₁ + b₂ X₂
- Many non-linear functions can be transformed.

□ Log-Linear Model

Approximates discrete multi-dimensional probability distributions.

Clustering

Outlier Detection

Overview

- 1. General Data Characteristics
- 2. Descriptive Data Summarization
- 3. Data Cleaning
- 4. Data Integration
- 5. Data Transformation
- 6. Data Reduction

Data Integration

Definition

- Process to combine multiple data sources into coherent storage
- Process to provide uniform interface to multiple data sources

Process

• Data Modeling \rightarrow Schema Matching \rightarrow Data Extraction

Data Modeling

Creating global schema (mediated schema)

Schema Matching

- Matching between two attributes of different sources
- The most critical step of data integration
- Schema-level matching / Instance-level matching

Instance-Level Matching

Definition

Detecting and resolving data value conflicts

Entity Identification

- For the same real world entity, values from different sources might be different
- Possible reasons:
 - 1. different representations, e.g., Greg Hamerly = Gregory Hamerly
 - 2. different format, e.g., Sep 16, 2009 = 09/16/09
 - 3. different scale, e.g., meters \leftrightarrow inches

Schema-Level Matching

Definition

• Detecting and resolving attribute conflicts and redundant attributes

Object Identification

- The same attribute (or object) might have different names in different sources.
 e.g., transaction id = TID
- One attribute might be a "derived" attribute in another table.
 e.g., Age = Birthday

□ Attribute Redundancy Analysis

- Can be analyzed by correlation / variation measures
 - e.g., χ^2 test, Pearson coefficient, *t*-test, *F*-test

Pearson Coefficient

Pearson Coefficient

- Evaluates correlation between two samples.
- Given two samples $X = \{x_1, x_2, ..., x_n\}$ and $Y = \{y_1, y_2, ..., y_n\}$,

- If r > 0, X and Y are positively correlated.
- If r = 0, X and Y are independent.
- If r < 0, X and Y are negatively correlated.

t-Test and F-Test

□ *t*-Test (*t*-statistics)

Independent two-sample t-test:

$$t = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{s_1^2 / n_1 + s_2^2 / n_2}}$$

• Evaluates statistical variance between two samples.

□ ANOVA (Analysis of Variance) / F-test (F-statistics)

• Evaluates statistical variance among three or more samples

Chi-Square Test

$\Box \chi^2$ Test (χ^2 Statistic)

 Evaluates whether an observed distribution in a sample differs from a theoretical distribution (i.e., hypothesis).

• $\chi^2 = \sum_{i=1}^n \frac{(O_i - E_i)^2}{E_i}$ where E_i is an expected frequency and O_i is an observed frequency

• The larger χ^2 , the more likely the variables are related (positively or negatively).

Example	
---------	--

	Play chess	Not play chess	Sum (row)
Like science fiction	250 (90)	200 (360)	450
Not like science fiction	50 (210)	1000 (840)	1050
Sum (col.)	300	1200	1500

Overview

- 1. General Data Characteristics
- 2. Descriptive Data Summarization
- 3. Data Cleaning
- 4. Data Integration
- 5. Data Transformation
- 6. Data Reduction

Definition

• Process that maps an entire set of values of a given attribute into a new set of values

D Purpose

- To remove noise from data
- To change scales

Image: Methods

- Smoothing (including binning and regression)
- Normalization

General Normalization Methods

Min-Max Normalization

• Maps the values in the range [min, max] into a new range [min', max']

$$\frac{v'-min'}{max'-min'} = \frac{v-min}{max-min}$$

□ z-score Normalization

Transforms the values of an attribute A based on its mean and standard deviation

$$v' = \frac{v - \mu_A}{\sigma_A}$$

Decimal Scaling

• Moves decimal point of values $v' = \frac{v}{10^{j}}$ where j is the maximal digit

Motivation

- In a Q-Q plot, if two distributions are the same, then the plot should be a straight line.
- Can be extended to n dimensions

Description

• $q_k = (q_{k1}, ..., q_{kn})$: a vector of the kth quantile for all n dimensions

$$proj_{d}q_{k} = \left(\frac{1}{n}\sum_{i=1}^{n}q_{ki}, \dots, \frac{1}{n}\sum_{i=1}^{n}q_{ki}\right)$$

□ Algorithm

- Sort each column (dimension) of X to give X'
- Assign the means across rows of X' into each element of the row
- Rearrange each column of X' to the same order of X

□ Advantages

• Efficient in high dimensional data (popularly used for biological data pre-processing)

Disadvantages

In practice, each dimension may have different distribution

□ References

 Bolstad, B.M., et al., "A comparison of normalization methods for high density oligonucleotide array data based on variance and bias", Bioinformatics, Vol.19 (2003)

Overview

- 1. General Data Characteristics
- 2. Descriptive Data Summarization
- 3. Data Cleaning
- 4. Data Integration
- 5. Data Transformation
- 6. Data Reduction

Definition

 Process to obtain a reduced representation of a data set, which is much smaller in volume but produces almost the same analytical results

Problems

- Data mining algorithms take a very long time to run on the complete data sets
- Data analysis methods are complex, inaccurate in the high dimensional data

Methods

- Dimensionality reduction
- Numerosity reduction

Dimensionality Reduction

D Curse of Dimensionality

- When dimensionality increases, data becomes increasingly sparse
- Possible combinations of subspaces will grow exponentially
- Density and similarity between data values becomes less meaningful

Purpose

- To avoid the curse of dimensionality
- To eliminate irrelevant features and reduce noise
- To reduce time and space required in data mining
- To allow easier visualization

Methods

- Feature extraction
- Feature selection

Process

- 1) Combining a multitude of correlated features
- 2) Creating a new dimensional feature space for the combined features

□ Example

- Principal component analysis (PCA)
 - Find the eigenvectors of the covariance matrix
 - Define a new space with the eigenvectors
- Wavelet transformation

D Problem

• New dimensional spaces might not be meaningful in the domain of data sets

Feature Selection

Methods

- Eliminating redundant features or irrelevant features
- Selecting significant (informative) features

□ Example

- Redundant features:
 - e.g., purchase price of a product and the amount of sales tax paid
- Irrelevant features
 - e.g., parent's name is irrelevant for selecting student scholarship candidates
- Informative features
 - e.g., student's name, student's GPA, parent's income are informative for selecting student scholarship candidates

Heuristic Search for Feature Selection

Problem of Feature Selection

- If d features, how many possible combinations of the features?
 - $\rightarrow 2^{d}$

D Typical Heuristic Methods

- Step-wise feature selection: Repeatedly pick the best feature
- Step-wise feature elimination: Repeatedly remove the worst feature
- Best combined feature selection and elimination
- Optimal branch and bound

D Purpose

• To reduce data volume by choosing alternative, smaller forms of data representation

Parametric Methods

- Assume the data fits some model, estimate model parameters, store only the parameters, and discard the data.
- e.g., Regression

Non-parametric Methods

- Do not assume models, and use data values.
- e.g., Discretization, Clustering, Conceptual Hierarchy Generation

Discretization

Methods

- Dividing the range of continuous data into intervals
- Selecting significant (frequent) data

Strategy

- Supervised vs. Unsupervised
- Splitting (top-down) vs. Merging (bottom-up)

□ Examples

- Binning: top-down, unsupervised
- Sampling: top-down, supervised
- Entropy-based Discretization: top-down, supervised

Conceptual Hierarchy Generation

Ordering Attributes

- Partial/total ordering of attributes at the schema level
- e.g., street < city < state < country

□ Hierarchy Generation

- A hierarchy for a set of values by explicit data grouping
- e.g., {Dallas, Waco, Austin} < Texas

Automatic Method

Based on the number of distinct values per attribute

Questions?

□ Lecture Slides on the Course Website, "https://ads.yonsei.ac.kr/faculty/data_mining"

